• Title/Summary/Keyword: DC Railway Power System

Search Result 128, Processing Time 0.03 seconds

The Modeling of Power conversion system with PEM fuel cell (연료전지를 이용한 전력변환장치 시스템 모델링)

  • Han, Kyung-He;Kwon, Sam-Yung;Park, Hyun-June;Lee, Byung-Song;Baek, Soo-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1984-1989
    • /
    • 2008
  • A powered system with fuel cell is regarded as a high current and low voltage source. Effects of the loads on the electrical power source are important to optimize the integrated power system. The design parameters of the system should be chosen by taking into account the characteristics of the fuel cell, so the costs of the power system at given operating conditions can be reduced. Furthermore, the dynamics characteristic of the system is crucial to acquire performance in applications, particularly interactions between loads and the fuel cell system. Currently, no integrated simulation has been approached to analyze interrelated effects. Therefore, the dynamic models of power conversion system with a PEM fuel cell that includes the PEM fuel cell stack, DC/DC converter and associated controls is developed. Electric lads for the system are derived by using a power theory that separates a load current into active, reactive, distortion or a mixed current component. Dependency of the DC capacitor on the loads are analyzed.

  • PDF

Research on Power Converters for High-Efficient and Light-Weight Auxiliary Power Supplies (APS) in Railway System (철도차량 보조전원장치의 고효율-경량화를 위한 전력변환회로 연구)

  • Lee, Jae-Bum;Cho, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2017
  • A recent trend of technical development in auxiliary-power-supplies (APS) is to replace 60Hz low frequency transformers with isolated type dc/dc converters. This paper introduces the technical trend in APS structures and proposes a power converter circuit suitable for high-efficient and light-weight APS. By utilizing the resonant converter, which achieves ZCS, to reduce switching losses, various types of APS structures (1-stage and 2-stage) are reviewed, and they are verified by simulation. The full-bridge resonant LLC converter is designed with a 1-stage power converting structure; the resonant converter topology is designed with a 2-stage power converting structure that has a pre-regulator converter to compensate for the wide input voltage range. Both a step-down converter and a step-up converter are designed and compared for the pre-regulator in the 2-stage structure. Operational characteristics are compared with simulation results and loss analyses are presented to proposes appropriate system structure and topologies.

Computer Algorithm for the Loadflow of the DC Traction Power Supply System (도시철도의 DC급전시스템 해석 알고리즘)

  • 정상기;홍재승
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.78-85
    • /
    • 2000
  • Computer algorithms for the loadflow of the DC traction power supply system are examined. Algorithms to solve the nodal equation are reviewed and the two iterative methods to solve the nonlinear nature of the loadflow are analyzed and tested, which are so called conductance matrix method and current vector iterative mettled. The result of the analysis tells that the current vector iterative method makes faster convergency and needs less computing time, and it is verified by the test running of the programs based on each of the iterative methods.

  • PDF

Approximate Model for Peak Demand Power Computation in Metro Railway with DC Rectifiers (DC정류기를 갖는 도시철도의 최대수요전력 산출 근사모델)

  • Kim, Han-Su;Kwon, Oh-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.372-378
    • /
    • 2013
  • This paper presents an approximate model for computing the peak demand power in a metro railway system. The peak demand of substations can be calculated using the current vector iteration method. But the existing method requires many repeated calculations to determine the peak demand power, which makes it difficult to apply to the real-time peak power control problem. In this paper, we assume that none of the conditions vary except source impedance and make an approximate model for rapid calculation based on changes in the impedance of the power substation. The proposed model result is approximately the same as the existing model, which is demonstrated through simulation.

Design of IEC 61850 Logical Nodes for Modeling Protective Elements of Selective-Breaking Integrated Protective Relay for DC Traction Power Supply System (DC 급전계통 선택차단형 통합보호계전기 보호요소 IEC 61850 Logical Node 설계)

  • Yun, Jun-Seok;Kim, In-Woong;Kim, Jin-Ho;An, Tae-Pung;Jung, Ho-Sung;Jung, Tae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.491-496
    • /
    • 2012
  • There are several protective relays used to protect DC traction power supply system for DC railway. These relays, however, are made by different manufactures and they have different ways for their operations. Therefore, there are difficulties for cooperation between the devices or the devices and an upper system. In order to increase interoperability and stability of the system composed of devices made by different manufactures, IEC 61850 international standards are applied to design logical nodes for modeling protective elements used in protective relays.

A Control Design of Energy Storage System for Electric Railway Vehicle Using Supercapacitor (슈퍼커패시터를 이용한 전동차량용 에너지저장시스템의 제어기 설계)

  • Noh, Se-Jin;Lee, Jin-Mok;Son, Kyoung-Min;Choi, Eun-Jin;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.994-995
    • /
    • 2008
  • It is possible to suppress voltage drops, power loading fluctuations and regeneration power lapses for DC railway systems by applying an energy storage system. A electric double layer capacitor (EDLC) of the rapid charge/discharge type has been developed and used in wide ranges. It has a long life, high efficiency and maintenance free/low pollution features as a new energy storage element. In this paper, an efficient charge and discharge control method of a bidirectional DC-DC converter using the supercapacitor is proposed.

  • PDF

A Scheme for Adoption of Regenerative Inverter in DC Transit System (직류급전시스템 회생용 인버터 개발 및 실계통 적용 방안)

  • Kim, Joo-Rak;Han, Moon-Seob;Chang, Sang-Hoon;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1044-1045
    • /
    • 2008
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. EMU in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMU on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system will be increased. This paper present the adoption of developed inverter in commercial railway line and the test result procedure of developed inverter is presented.

  • PDF

Applying Hybrid Type Energy Storage System in AC High Speed Railway (하이브리드 타입 에너지 저장장치의 교류 고속철도 적용)

  • Jeon, Yong-Joo;Kang, Byoung-Wook;Chai, Hui-Seok;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.60-66
    • /
    • 2014
  • In case of DC railway, value of ESS(Energy Storage System) is already approved. Whereas AC railway system, there are a lot of differences such as system design and operation pattern. Therefore there is doubt about AC ESS usefulness. Especially, regenerative energy can return to the source. So in case of AC 25kV system, it is necessary to consider different operation algorithm compare to DC railway system. In this paper ESS which is installed in AC high-speed railway was introduced. Power consumption pattern of High speed trains were analyzed, proper storage material was reviewed and operation algorithm was suggested. Super capacitor and Battery was used with hybrid type. Super capacitor was used to handle short term energy movement because of its prompt response and battery was used to handle long term energy movement because of its high energy density. Also in case of operation algorithm, phase control method was upgraded compare to voltage magnitude detection method.

Development of Inverter for Regenerative Power and Test Equipment (직류급전시스템 회생용 인버터의 시험설비 구축 및 특성시험)

  • Kim, Joo-Rak;Han, Moon-Seob;Kim, Yong-Ki;Kim, Jung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.399-406
    • /
    • 2008
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. EMU in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMU on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system will be increased. This paper present the developed inverter for regenerative power and its test equipment. Test result of developed inverter is presented.

  • PDF

A Study on an infuence of power quality problem on the electric train at dead section (절연구간에서의 전력품질 문제가 전기철도에 미치는 영향에 관한 연구)

  • Lee, Bong-Yi;Kim, Jae-Chul;Moon, Jong-Fil
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.92-94
    • /
    • 2005
  • In this paper, when electric train is in dead-section the effect on electric train system was dealt. The feeding system of electrical railway is AC or DC. When the electric train is passed AC feeding system to DC, vice versa or phase is changed in between AC feeding systems, there is a dead section. A dead section usually makes the electrical system complex md may have an adverse effect on the electrical system inside the train. Accordingly, it is important to analyze the effect on trains in dead-section. Modeling an electric train and simulation using PSCAD/EMTDC was accomplished to analyze how power quality problem such as inverter switching surge is propagated to electric train through the feeding line, railway, pantograph.

  • PDF