• Title/Summary/Keyword: DC Power-Bus

Search Result 233, Processing Time 0.026 seconds

A Modularized Two-Stage Charge Equalization Converter for Series Connected Lithium-Ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.535-537
    • /
    • 2008
  • This paper proposes a modularized two-stage charge equalization converter for a series-connected lithium-ion battery string. In this paper, the series-connected battery sting is modularized into M modules, and each module has K cells in series. With this modularization, low voltage stress on the electronic devices can be achieved. A two-stage dc-dc converter with cell selection switches is employed. The first stage dc-dc converter steps down the high bus voltage to about 10 V. The second stage dc-dc converter integrated with selection switches equalizes the cell voltages. A prototype for 88 lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing low voltage stress, small size, and low cost.

  • PDF

A Seamless Transfer Method of Bidirectional DC-DC Converter for ESS (에너지 저장장치를 위한 양방향 DC-DC컨버터의 끊김없는 입·출력 절환 기법)

  • Park, Junsung;Kwon, Minho;Choi, Sewan
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.289-290
    • /
    • 2013
  • 소규모 전력망에서 계통에 이상이 발생하면 ESS의 양방향 컨버터는 배터리 충 방전 동작을 멈추고 DC-Bus 전압을 제어하는 기능이 요구된다. 이 경우 양방향컨버터는 배터리측 제어에서 DC-Bus측 고전압제어로의 신속한 전환이 요구된다. 본 논문에서는 양방향컨버터의 끊김없는 입 출력 절환을 위한 새로운 제어기법을 제안한다. 제안하는 기법은 가변리미터를 이용하여 저전압 및 고전압제어기를 하나로 통합하였고 상위제어기의 지령없이 자율적인 판단으로 절환이 가능하다. 제안한 알고리즘은 2kW급 시작품을 제작하여 타당성을 검증하였다.

  • PDF

the power flow control and voltage compensation by 20kVA prototype UPFC (20kVA급 Prototype UPFC의 전력조류제어와 모선전압보상)

  • Jeon, Jin-Hong;Kim, Ji-Won;Chun, Yeung-Han;Kim, Hak-Man;Kook, Kyung-Soo;Oh, Tae-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.349-352
    • /
    • 2001
  • FACTS technology is developed into the sophisticated system technology which combines conventional power system technology with power electronics, micro-process control, and information technology. Its objectives are achieving enhancement of the power system flexibility and maximum utilization of the power transfer capability through improvements of the system reliability, controllability, and efficiency [1]. As a series and shunt compensator, UPFC consists of two inverters with common dc link capacitor bank. It controls the magnitude of shunt bus voltage and real and reactive power flow of transmission line[2]. In this paper, we present the design, implementation and test results of developed 20kVA level prototype UPFC. It is applied to power system simulator and controls the real and reactive power flow and shunt bus voltage magnitude.

  • PDF

Efficiency Analysis for Differential Power Processing Converter Configurations in Photovoltaic Electric Vehicles (태양광 발전차량의 차동전력 조절기 배열에 따른 효율분석)

  • Kwon, Kyoungjun;Kim, Katherine A.
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.215-216
    • /
    • 2016
  • 최근 전기자동차(EV)의 수요가 높아짐에 따라, 그와 관련된 연구가 많이 진행되고 있다. 특히 기존 EV dc-bus에 쉽게 결합할 수 있는 photovoltaic-전기자동차(PV-EV)의 개발이 진행되었지만, 낮은 시스템 효율로 인해 상용화에 어려움을 겪었다. PV-EV의 특성상 태양광 시스템이 불균일한 태양빛의 변화에 노출되기 때문에, 차동전력 조절기(differential power processing (DPP) 컨버터)가 없는 기존의 시스템에서는 시스템 효율이 매우 저하된다. 이러한 문제점을 해결하기 위해, 본 연구에서 차동전력 조절기가 적용된 PV-EV 시스템을 제안하였다. 본 논문에서는 차동전력 조절기 시스템의 새로운 배열인 DPP to Load 배열을 제안하며 기존의 차동전력 조절기 시스템 배열과 비교분석 하였다. 또한 각각의 차동전력 조절기 배열에서 태양빛의 세기, 보조 부하의 크기, 컨버터의 효율을 변화시키며 각 배열의 시스템 효율을 비교하였다. 주어진 대부분의 조건에서 가장 높은 시스템 효율을 보여준 배열은 Isolated bus 배열 이었다. 맑은 날, 모든 컨버터의 효율은 85%, 보조부하가 250 W라고 가정하였을 때, Isolated bus 배열은 가장 높은 시스템 효율인 74%의 효율을 나타내었다.

  • PDF

An Active Damping Device for a Distributed Power System (전력시스템을 위한 Active Damping Device)

  • La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.116-121
    • /
    • 2009
  • Distributed power systems (DPSs) has been widely used various industrial/military applications due to their various advantages. Furthermore, the "All electric" concept, in conjunction with DC DPS, appears to be more advanced and mature in the AEV(All-Electric Vehicular) industry. Generally, AEV carry many loads with varied functions. However, there may be large pulsed loads with short duty ratios which can affect the normal operation of other loads. In this paper, a converter with spilt capacitors and a simple adaptive controller is proposed as a active damping device to mitigate the voltage transients on the bus. The proposed converter allows the smaller capacitive storage. In addition, the proposed control approach has the advantage of requiring only one sensor and performing both the functions of mitigating the voltage bus transients and maintaining the level of energy stored. The control algorithm has been implemented on a TMS320F2812 Digital Signal Processor (DSP). Simulation and experimental results are presented which verify the proposed control principle and demonstrate the practicality of the circuit topology.

Performance Evaluation of Various Bus Clamped Space Vector Pulse Width Modulation Techniques

  • Nair, Meenu D.;Biswas, Jayanta;Vivek, G.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1244-1255
    • /
    • 2017
  • The space vector pulse width modulation (SVPWM) technique is a popular PWM method for medium voltage drive applications. Conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are the most common SVPWM techniques. This paper evaluates the performance of various advanced BCSVPWM strategies in terms of their harmonic distortion and switching loss based on a uniform frame work. A uniform frame work, pulse number captures the performance parameter variations of different SVPWM strategies for various number of samples with heterogeneous pulse numbers. This work compares different advanced BCSVPWM techniques based on the modulation index and location of the clamping position (zero vector changing angle ) of a phase in a line cycle. The frame work provides a fixed fundamental frequency of 50Hz. The different BCSVPWM switching strategies are implemented and compared experimentally on a 415V, 2.2kW, 50Hz, 3-phase induction motor drive which is fed from an IGBT based 2 KVA voltage source inverter (VSI) with a DC bus voltage of 400 V. A low cost PIC microcontroller (PIC18F452) is used as the controller platform.

FPGA-based Centralized Controller for Multiple PV Generators Tied to the DC Bus

  • Ahmed, Ashraf;Ganeshkumar, Pradeep;Park, Joung-Hu;Lee, Hojin
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.733-741
    • /
    • 2014
  • The integration of photovoltaic (PV) energy sources into DC grid has gained considerable attention because of its enhanced conversion efficiency with reduced number of power conversion stages. During the integration process, a local control unit is normally included with every power conversion stage of the PV source to accomplish the process of maximum power point tracking. A centralized monitoring and supervisory control unit is required for monitoring, power management, and protection of the entire system. Therefore, we propose a field-programmable gate array (FPGA) based centralized control unit that integrates all local controllers with the centralized monitoring unit. The main focus of this study is on the process of integrating many local control units into a single central unit. In this paper, we present design and optimization procedures for the hardware implementation of FPGA architecture. Furthermore, we propose a transient analysis and control design methodology with consideration of the nonlinear characteristics of the PV source. Hardware experiment results verify the efficiency of the central control unit and controller design.

An Improved SVPWM Control of Voltage Imbalance in Capacitors of a Single-Phase Multilevel Inverter

  • Ramirez, Fernando Arturo;Arjona, Marco A.
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1235-1243
    • /
    • 2015
  • This paper presents a modified Space Vector Pulse Width Modulation Technique (SVPWM), which solves the well-known problem of voltage imbalance in the capacitors of a single-phase multilevel inverter. The proposed solution is based on the measurement of DC voltage levels at each capacitor of the inverter DC bus. The measurements are then used to adjust the size of the active vectors within the SVPWM algorithm to keep the voltage waveform sinusoidal regardless of any voltage imbalance on the DC link capacitors. When a voltage deviation exceeds a predetermined hysteresis band, the correspondent voltage vector is restricted to restore the voltage level to an acceptable threshold. Hence, the need for external voltage regulators for the voltage capacitors is eliminated. The functionality of the proposed algorithm is successfully demonstrated through simulations and experiments on a grid tied application.

Fault Diagnosis of a Electrolytic Capacitor for Inverter DC-Link Voltage Smoothing (인버터 직류링크 전압 평활용 전해 커패시터의 고장 진단)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.372-377
    • /
    • 2007
  • This paper proposes a novel fault diagnosis method of a electrolytic capacitor used for DC-link voltage smoothing in adjustable speed drives. The equivalent series resistance (ESR) of the electrolytic capacitor is directly estimated from DC-link voltage and load currents and the status of the electrolytic capacitor is determined from the estimated ESR. To compensate the variation of the ESR owing to temperature variation, diodes are located on the same PCB near the capacitor and the temperature of the capacitor is sensed indirectly from the voltage drop of diodes. Simulation and experimental studies show the effectiveness of the proposed method.

Flywheel Energy Storage with Power factor Compensation (역률 보상기능을 갖는 플라이휠 에너지 저장장치)

  • Kwak C.H.;Jung S.O.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.285-287
    • /
    • 2006
  • 플라이휠 에너지 저장장치는 회전하는 물체에 에너지를 저장하고 이 에너지를 필요 시 기계적인 에너지를 변환하여 전기적 축전지이다. 플라이휠은 무정전전원장치의 직류측의 단자에서 전원을 받아 충전되며, 무정전전원장치의 입력 AC전압이 차단되어 UPS DC bus전압이 설정 값 이하로 떨어지면 저장 되어 있는 에너지를 전력변환 모듈에 의해 DC로 변환하여 UPS에 공급한다. 또한 전압 Sag, 전압의 불평형, 순간정전 및 고조파에 의한 정전에 대비하여 축전지와 플라이휠 에너지 저장장치를 조합하여 운용할 경우 축전지와 UPS의 DC BUS가 전기적으로 절연이 되어 개별 축전지 구성과 동일한 동작이 되도록 구성으로 축전지의 방전 횟수를 감소함으로써 축전지의 수명도 연장 할 수 있습니다.

  • PDF