• Title/Summary/Keyword: DC Output Voltage control

Search Result 729, Processing Time 0.027 seconds

A Control Technique for 120Hz DC Output Ripple-Voltage Suppression Using BIFRED with a Small-Sized Energy Storage Capacitor

  • Kim Jung-Bum;Park Nam-Ju;Lee Dong-Yun;Hyun Dong-Seok
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.190-197
    • /
    • 2005
  • This paper presents a technique to reduce the low frequency ripple voltage of the dc output in a BIFRED converter with a small-sized energy storage capacitor. The proposed pulse width control method can be effectively used to suppress the low frequency ripple appeared in the dc output and still maintains generally good performance such as low THD of input line current and a high power factor. Using the small-sized energy storage capacitor, it has better merits of low cost and smaller size than a conventional BIFRED converter. The proposed technique is illustrated its validity and effectiveness through simulations.

Time-Delay Effects on DC Characteristics of Peak Current Controlled Power LED Drivers

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.715-722
    • /
    • 2012
  • New discrete time domain models for the peak current controlled (PCC) power LED drivers in continuous conduction mode include for the first time the effects of the time delay in the pulse-width-modulator. Realistic amounts of time delay are found to have significant effects on the average output LED current and on the critical inductor value at the boundary between the two conduction modes. Especially, the time delay can provide an accurate LED current for the PCC buck converter with a wide input voltage. The models can also predict the critical inductor value at the mode boundary as functions of the input voltage and the time delay. The overshoot of the peak inductor current due to the time delay results in the increase of the average output current and the reduction of the critical inductor value at the mode boundary in all converters. Experimental results are presented for the PCC buck LED driver with constant-frequency controller.

Average Current Mode Control for LLC Series Resonant DC-to-DC Converters

  • Park, Chang Hee;Cho, Sung Ho;Jang, Jinhaeng;Pidaparthy, Syam Kumar;Ahn, Taeyoung;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • An average current mode control scheme that consistently offers good dynamic performance for LLC series resonant DC-to-DC converters irrespective of the changes in the operational conditions is presented in this paper. The proposed control scheme employs current feedback from the resonant tank circuit through an integrator-type compensation amplifier to improve the dynamic performance and enhance the noise immunity and reliability of the feedback controller. Design guidelines are provided for both current feedback and voltage feedback compensation. The performance of the new control scheme is demonstrated through an experimental 150 W converter operating with 340 V to 390 V input voltage to provide a 24 V output voltage.

A Control Scheme for Quality Improvement of Input-Output Current of Small DC-Link Capacitor Based Three-Level NPC Inverters (소용량 직류단 커패시터를 가지는 3-레벨 NPC 인버터의 입-출력 전류 품질 향상을 위한 제어 기법)

  • In, Hyo-Chul;Kim, Seok-Min;Park, Seong-Soo;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.369-372
    • /
    • 2017
  • This paper presents a control scheme for three-level NPC inverters using small DC-link capacitors. To reduce the inverter system volume, the film capacitor with small capacitance is a promising candidate for the DC-link. When small capacitors are applied in a three level inverter, however, the AC ripple component increases in the DC-link NPV (neutral point voltage). In addition, the three-phase input grid currents are distorted when the DC-link capacitors are fed by diode rectifier. In this paper, the additional circuit is applied to compensate for small capacitor systems defect, and the offset voltage injection method is presented for the stabilization in NPV. These two proposed processes evidently ensure the quality improvement of the input grid currents and output load currents. The feasibility of the proposed method is verified by experimental results.

Buck-Boost Interleaved Inverter Configuration for Multiple-Load Induction Cooking Application

  • Sharath Kumar, P.;Vishwanathan, N.;Bhagwan, K. Murthy
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.271-279
    • /
    • 2015
  • Induction cooking application with multiple loads need high power inverters and appropriate control techniques. This paper proposes an inverter configuration with buck-boost converter for multiple load induction cooking application with independent control of each load. It uses one half-bridge for each load. For a given dc supply of $V_{DC}$, one more $V_{DC}$ is derived using buck-boost converter giving $2V_{DC}$ as the input to each half-bridge inverter. Series resonant loads are connected between the centre point of $2V_{DC}$ and each half-bridge. The output voltage across each load is like that of a full-bridge inverter. In the proposed configuration, half of the output power is supplied to each load directly from the source and remaining half of the output power is supplied to each load through buck-boost converter. With buck-boost converter, each half-bridge inverter output power is increased to a full-bridge inverter output power level. Each half-bridge is operated with constant and same switching frequency with asymmetrical duty cycle (ADC) control technique. By ADC, output power of each load is independently controlled. This configuration also offers reduced component count. The proposed inverter configuration is simulated and experimentally verified with two loads. Simulation and experimental results are in good agreement. This configuration can be extended to multiple loads.

Study on the Improvement of utility factor for output voltage on 3-phase PWM Inverter (3상 PWM인버어터 출력전압 이용률 개선에 관한 연구)

  • 박성준;변영복;김광태;권순재;김철우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.101-104
    • /
    • 1995
  • The linear control of DC Link voltage in PWM inverter is very importent to estimate the goodness of PWM method. In motor control system, for the maximum torque on full region operating, the whole of DC Link voltage region must be used. 3 phase sinusoidal PWM inverter has a low efficienty at the using of output voltage. according to make better the efficiency, new improved PWM control method is proposed. The results of experimentation and simulation are included to verify the validity of this method.

  • PDF

Nonlinear Representation of Two-Stage Power-Factor-Correction AC/DC Circuits

  • Orabi Mohamed;Ninomiya Tamotsu
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.197-204
    • /
    • 2004
  • Two-stage Power-Factor-Correction (PFC) converters are the most common circuits for drawing sinusoidal and in phase current waveforms from an ac source with a good regulated output voltage. The first stage is a boost PFC converter with average-current-mode control for achieving the near-unity power factor and the second stage is a forward converter with voltage-mode control to regulate the output voltage. Stability analysis and design methods of two-stage PFC converters have previously been discussed using linear models. Recently, new nonlinear phenomena have been detected in pre-regulator boost PFC circuits and a new nonlinear model has been proposed for pre-regulated PFC converters. Therefore, investigation of two-stage PFC converters from the nonlinear viewpoint becomes important because the second stage DC/DC converter adds more complexity to the circuit. So, this paper introduces a study of the stability of two-stage PFC converters. A novel nonlinear model of two-stage PFC converters is proposed. Then, a stability analysis is made based upon this nonlinear model. The high correspondence between the simulated and experimental results confirms our analysis.

Digital Control of Secondary Active Clamp Phase-Shifted Full-Bridge Converters

  • Che, Yanbo;Ma, Yage;Ge, Shaoyun;Zhu, Dong
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.421-431
    • /
    • 2014
  • A DSP-based self-adaptive proportional-integral (PI) controller to control a DC-DC converter is proposed in this paper. The full-bridge topology is adopted here to obtain higher power output capability and higher conversion efficiency. The converter adopts the zero-voltage-switching (ZVS) technique to reduce the conduction losses. A parallel secondary active clamp circuit is added to deal with the voltage overshoot and ringing effect on the transformer's secondary side. A self-adaptive PI controller is proposed to replace the traditional PI controller. Moreover, the designed converter adopts the constant-current and constant-voltage (CC-CV) output control strategy. The secondary active clamp mechanism is discussed in detail. The effectiveness of the proposed converter was experimentally verified by an IGBT-based 10kW prototype.

A Single-Stage AC/DC Converter with Low Voltage Stresses and Reduced Switching Losses

  • Kim, Kyu-Tae;Choi, Woo-Young;Kwon, Jung-Min;Kwon, Bong-Hwan
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.823-834
    • /
    • 2009
  • This paper proposes a high-efficiency single-stage ac/dc converter. The proposed converter features low voltage stresses and reduced switching losses. It operates at the boundary of discontinuous- and continuous-conduction modes by employing variable switching frequency control. The turn-on switching loss of the switch can be reduced by turning it on when the voltage across it is at a minimum. The voltage across the bulk capacitor is independent of the output loads and maintained within the practical range for the universal line input, so the problem of high voltage stress across the bulk capacitor is alleviated. Moreover, the voltage stress of the output diodes is clamped to the output voltage, and the output diodes are turned off at zero-current. Thus, the reverse-recovery related losses of the output diodes are eliminated. The operational principles and circuit analysis are presented. A prototype circuit was built and tested for a 150 W (50V/3A) output power. The experimental results verify the performance of the proposed converter.

Circuit configuration of step-up converter with reduced working voltage of output capacitor (출력커패시터 내압 저감이 가능한 승압 컨버터 구조)

  • Kim, Sun-pil;Park, Sung-Jun;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.630-637
    • /
    • 2018
  • To supply a high voltage to an inverter, a motor control unit (MCU) generally employs a front-end boost converter. Because it generates a high output voltage, the converter needs an output capacitor, which has a high working voltage resulted in cost increasing. To solve this problem, we present a bidirectional dc-to-dc converter, which can decrease a working voltage of the output capacitor. Basic characteristic of the proposed converter is similar to a conventional boost converter. A difference comes from the structure of the output terminal connecting an output capacitor and an input battery in series. Owing to this circuit configuration, the working voltage of the output capacitor becomes lower than that of a conventional boost converter. After theoretical analysis, we carry out simulations and experiments to verify the validity and performance comparing with a conventional boost converter.