• Title/Summary/Keyword: DC Output Voltage control

Search Result 728, Processing Time 0.027 seconds

A Study on DC Traction Power Supply System Using PWM Converter (PWM컨버터를 적용한 경전철 전력공급시스템에 관한 연구)

  • Kim, Joorak;Park, Chang-Reung;Park, Kijun;Kim, Joo-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.250-254
    • /
    • 2016
  • Currently, power conversion system which converts AC to DC Power is applied in domestic urban railway. The diode rectifier is used in most of them. However the diode rectifier can not control the output voltage and can not regenerate power as well. On the other hand, PWM (pulse width modulation) converter using IGBT (isolated gate bipolar transistor) can control output voltage, allowing it to reduce the output voltage drop. Moreover the Bi-directional conduction regenerates power which does not require additional device for power regeneration control. This paper compared the simulation results for the DC power supply system on both the diode rectifier and the PWM converter. Under the same load condition, simulation circuit for each power supply system was constructed with the PSIM (performance simulation and modeling tool) software. The load condition was set according to the resistance value of the currently operating impedance of light rail line, and the line impedance was set according to the distance of each substations. The train was set using a passive resistor. PI (proportional integral) controller was applied to regulate the output voltage. PSIM simulation was conducted to verify that the PWM Converter was more efficient than the diode rectifier in DC Traction power supply system.

Control of Three-Phase PWM Rectifiers Using Only DC-Side Sensors (직류측 센서만을 이용한 3상 PWM 정류기의 제어)

  • 이동춘
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.278-281
    • /
    • 2000
  • In this abstract a novel control scheme of voltage-source PWM rectifiers using only dc-side sensors is proposed. The phase currents are reconstructed from switching states of the rectifier and the dc output current. For effective current control the currents are estimated by a predictive state observer. Also both the phase angle and the magnitude of th source voltage are estimated by phase estimator and magnitude estimator respectively. The validity of the proposed ac sensorless technique is verified by experimental results.

  • PDF

A New Current Control Method for Torque Ripple Reduction on Brushless DC Motor (Brushless DC Motor에서 토크리플 저감을 위한 새로운 전류제어 기법)

  • Kwon K.J.;Kim S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.575-578
    • /
    • 2003
  • This paper presents a new current control method to reduce torque ripple of Brushless DC Motor during commutation. In the proposed control strategy, the current slopes of rising and decaying phase during commutation is equalized by the compensation voltage. By adding the compensation voltage for it to the current controller output, the reduced torque ripple can be obtained. The simulation and experimental results show that the proposed method reduces the torque and the current ripples significantly.

  • PDF

Voltage Balancing Control of Input Voltage Source Employing Series-connected Capacitors in 7-level PWM Inverter (7-레벨 PWM 인버터의 직렬 커패시터 입력전원의 전압균형제어)

  • Kim, Jin-San;Kang, Feel-soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.209-215
    • /
    • 2018
  • This paper present a 7-level PWM inverter adopting voltage balancing control to series-connected input capacitors. The prior proposed 7-level PWM inverter consists of dc input source, three series-connected capacitors, two bidirectional switch modules, and an H-bridge. This circuit topology is useful to increase the number of output voltage levels, however it fails to generate 7-level in output voltage without consideration for voltage balancing among series-connected capacitors. Capacitor voltage imbalance is caused on the different period between charging and discharging of capacitor. To solve this problem, we uses the amplitude modulation of carrier wave, which is used to produce the center output voltage level. To verify the validity of the proposed control method, we carried out computer-aided simulation and experiments using a prototype.

LLC Resonant Converter with Auxiliary Switches Operating Over A Wide Output Voltage Range (넓은 입·출력전압 범위에서 제어 가능한 보조스위치 적용 LLC 공진컨버터)

  • Lee, Ji-Cheol;Kim, Min-Ji;Oh, Jae-Sung;Kim, Eun-Soo;Kook, Yoon-Sang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.256-264
    • /
    • 2018
  • This paper proposes a three-bridge LLC resonant converter with auxiliary switches for a wide output voltage control range. This converter can be controlled in two ways to achieve a wide controllable output voltage control range of $V_o$ to $3V_o$. The first control mechanism is achieved through the pulse width modulation (PM) of the auxiliary switches and primary switching devices, while the second control mechanism is achieved through the frequency modulation (FM) of the primary switching devices that are configured to operate in the full-bridge switching mode when the auxiliary switches are turned off. The feasibility of using the proposed converter is verified by the results of an experiment with a 2kW prototype.

Control of Booster Output Voltage in Fuel Cell Power Plant (연료전지발전용 부스터의 출력전압제어 연구)

  • Han, Soo-Bin;Jung, Bong-Man;Shin, Dong-Ryul;Choi, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1038-1040
    • /
    • 1992
  • Booster is used widely as one of the step-up DC/DC power converter in power conversion process for fuel cell power plant which have the electrical characteristic of the high current density and low cell voltage. In view of control system, booster can be unstable when it is operated in broad operation range because the transfer function of booster has zero in right half plane of s-domain. So for reliable operation, controller must make the system stable in whole working range. In this paper, the two control method such as digital PID control and fuzzy control is studied for booster output voltage regulation in fuel cell plant. The design procedure of PID control and fuzzy control is described. And the experiment of designed controller action is performed in various operation points for controller performance test.

  • PDF

Improvement measures for power quality of DC distribution (직류배전의 전력품질 향상 대책)

  • Han, Seok-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.536-537
    • /
    • 2010
  • If DC voltage adjustment can be controlled very easily, it is much more effective rather than AC in transmission efficiency. The main reason why DC is more effective than AC, DC has the same role as the 70[%] of AC whenever the same power send. In addition, AC streams the surface of electrical wire, but DC streams overall of electrical wire. Digital load, which is operated by DC, has increased in modern times. The step of convert of AC-DC has to be reduced. When we turn the dispersed AC-DC converters into the concentrated AC-DC converter, it can improve the effective of the whole system. Further more, if digital society develops more than now and the time of electric vehicle comes, the need of DC will increase much more than these days. This paper suggests that DC output of distributed power source and high efficient 3 phase PWM converter can control the adjustment of output voltage, harmonic restraint, power factor improvement and dump power.

  • PDF

Transient State Improvement of Three-Phase ZSI with the Input Feedforward and Fuzzy PI Controller (입력 피드포워드와 퍼지 PI제어기를 갖는 3상 ZSI의 과도상태 개선)

  • WU, Yan-Jun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.359-360
    • /
    • 2012
  • This paper proposes a scheme of auto-tuning fuzzy PI controller and input voltage feed forward to control the output voltage of a three-phase Z-source inverter (ZSI). The proposed scheme adjusts the ts (Kp and Ki) in real time in order to find the most suitable Kp and Ki for PI controller and to simplify the controller design. The proposed scheme is verified the validity by experiment and co-simulation in PSIM and MATLAB/SIMULINK both load step change and input DC voltage variation in Z-source inverter, and has compared with the conventional PID control scheme. The experiment results involve of three-phase output voltage, Z-network capacitor voltage and dc-link peak voltage value. By those analysis and comparison, the availability of the proposed method in output voltage transient response quality improving has been verified. Compared with conventional PID method, the proposed method showed a more effective and robust control performance for coping with the severe disturbance conditions.

  • PDF

A New PWM DC/DC Converter with Isolated Dual Output Using Single Power Stage

  • Lee, Dong-Yun;Hyun, Dong-Seok;Ick Choy
    • Journal of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.312-324
    • /
    • 2002
  • This paper presents a new PWM DC/DC converter with dual output power using single power stage, which has the isolation characteristics between each dual output. The proposed converter topology consists of two switches ($S_B$ and $S_F$) and only single secondary winding. Therefore, the proposed converter has better advantages of not only low cost and small size but also high power density because of using minimum components and devices compared with conventional methods which use multi winding transformers or several converters. The operating principle of the proposed converter topology, which includes the conventional auxiliary ZVT (Zero-Voltage-Transition) circuit to implement soft switching of the main switch, is illustrated in detail and the validity of the proposed converter is verified through several simulated and experimental results.

Stabilizing Control of DC/DC Buck Converters with Constant Power Loads in Continuous Conduction and Discontinuous Conduction Modes Using Digital Power Alignment Technique

  • Khaligh Alireza;Emadi Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.63-72
    • /
    • 2006
  • The purpose of this raper is to address the negative impedance instability in DC/DC converters. We present the negative impedance instability of PWM DC/DC converters loaded by constant power loads (CPLs). An approach to design digital controllers for DC/DC converters Is presented. The proposed method, called Power Alignment control technique, is applied to DC/DC step-down choppers operating in continuous conduction or discontinuous conduction modes with CPLs. This approach uses two predefined state variables instead of conventional pulse width modulation (PWM) to regulate the output voltage. A comparator compares actual output voltage with the reference and then switches between the appropriate states. It needs few logic gates and comparators to be implemented thus, making it extremely simple and easy to develop using a low-cost application specific integrated circuit (ASIC) for converters with CPLs. Furthermore, stability of the proposed controllers using the small signal analysis as well as the second theorem of Lyapunov is verified. Finally, simulation and analytical results are presented to describe and verify the proposed technique.