• Title/Summary/Keyword: DC Output Filter

Search Result 194, Processing Time 0.037 seconds

Comparative Study of PI, Fuzzy and Fuzzy tuned PI Controllers for Single-Phase AC-DC Three-Level Converter

  • Gnanavadivel, J;Senthil Kumar, N;Yogalakshmi, P
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.78-90
    • /
    • 2017
  • This paper presents the design of closed loop controllers operating a single-phase AC-DC three-level converter for improving power quality at AC mains. Closed loop inhibits outer voltage controller and inner current controller. Simulations of three level converter with three different voltage and current controller combinations such as PI-Hysteresis, Fuzzy-Hysteresis and Fuzzy tuned PI-Hysteresis are carried out in MATLAB/Simulink. Performance parameters such as input power factor and source current total harmonic distortion (THD) are considered for comparison of the three controller combinations. The fuzzy-tuned PI voltage controller with hysteresis current controller combination provides a better result, with a source-current THD of 0.93% and unity power factor without any source side filter for the three level converter. For load variations of 25% to 100%, a THD of less than 5% is obtained with a maximum value of only 1.67%. Finally, the fuzzy-tuned PI voltage with hysteresis controller combination is implemented in a Xilinx Spartan-6 XC6SLX25 FPGA board for experimental validation of power quality enhancement. A prototype 100 W, 0-24-48 V as output converter is considered for the testing of controller performance. A source-current THD of 1.351% is obtained in the experimental study with a power factor near unity. For load variations of 25% to 100%, the THD is found to be less than 5%, with a maximum value of only 2.698% in the experimental setup which matches with the simulation results.

Tracking Position Control of DC Servo Motor in LonWorks/IP Network

  • Song, Ki-Won;Choi, Gi-Sang;Choi, Gi-Heung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • The Internet's low cost and ubiquity present an attractive option for real-time distributed control of processes on the factory floor. When integrated with the Internet, the LonWorks open control network can give ubiquitous accessibility with the distributed control nature of information on the factory floor. One of the most important points in real-time distributed control of processes is timely response. There are many processes on the factory floor that require timely response. However, the uncertain time delay inherent in the network makes it difficult to guarantee timely response in many cases. Especially, the transmission characteristics of the LonWorks/IP network show a highly stochastic nature. Therefore, the time delay problem has to be resolved to achieve high performance and quality of the real-time distributed control of the process in the LonWorks/IP Virtual Device Network (VDN). It should be properly predicted and compensated. In this paper, a new distributed control scheme that can compensate for the effects of the time delay in the network is proposed. It is based on the PID controller augmented with the Smith predictor and disturbance observer. Designing methods for output feedback filter and disturbance observer are also proposed. Tracking position control experiment of a geared DC Servo motor is performed using the proposed control method. The performance of the proposed controller is compared with that of the Internal Model Controller (IMC) with the Smith predictor. The result shows that the performance is improved and guaranteed by augmenting a PID controller with both the Smith predictor and disturbance observer under the stochastic time delay in the LonWorks/IP VDN.

A Resonant Characteristics Analysis and Suppression Strategy for Multiple Parallel Grid-connected Inverters with LCL Filter

  • Sun, Jian-jun;Hu, Wei;Zhou, Hui;Jiang, Yi-ming;Zha, Xiao-ming
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1483-1493
    • /
    • 2016
  • Multiple parallel inverters have multiple resonant frequencies that are influenced by many factors. This often results in stability and power quality problems. This paper develops a multiple input multiple output model of grid-connected inverter systems using a closed-loop transfer function. The influence factors of the resonant characteristics are analyzed with the developed model. The analysis results show that the resonant frequency is closely related to the number, type and composition ratio of the parallel inverters. To suppress resonance, a scheme based on virtual impedance is presented, where the virtual impedance is emulated in the vicinity of the resonance frequency. The proposed scheme needs one inverter with virtual impedance control, which reduces the design complexity of the other inverter controllers. Simulation and experimental tests are carried out on two single phase converter-based setups. The results validate the correctness of the model, the analytical results and the resonant suppressing scheme.

Minimum Statistics-Based Noise Power Estimation for Parametric Image Restoration

  • Yoo, Yoonjong;Shin, Jeongho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.41-51
    • /
    • 2014
  • This paper describes a method to estimate the noise power using the minimum statistics approach, which was originally proposed for audio processing. The proposed minimum statistics-based method separates a noisy image into multiple frequency bands using the three-level discrete wavelet transform. By assuming that the output of the high-pass filter contains both signal detail and noise, the proposed algorithm extracts the region of pure noise from the high frequency band using an appropriate threshold. The region of pure noise, which is free from the signal detail part and the DC component, is well suited for minimum statistics condition, where the noise power can be extracted easily. The proposed algorithm reduces the computational load significantly through the use of a simple processing architecture without iteration with an estimation accuracy greater than 90% for strong noise at 0 to 40dB SNR of the input image. Furthermore, the well restored image can be obtained using the estimated noise power information in parametric image restoration algorithms, such as the classical parametric Wiener or ForWaRD image restoration filters. The experimental results show that the proposed algorithm can estimate the noise power accurately, and is particularly suitable for fast, low-cost image restoration or enhancement applications.

Ground Experiment of Spacecraft Attitude Control Using Hardware Testbed

  • Oh, Choong-Suk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.75-87
    • /
    • 2003
  • The primary objective of this study is to demonstrate ground-based experiment for the attitude control of spacecraft. A two-axis rotational simulator with a flexible ann is constructed with on-off air thrusters as actuators. The simulator is also equipped with payload pointing capability by simultaneous thruster and DC servo motor actuation. The azimuth angle is controlled by on-off thruster command while the payload elevation angle is controlled by a servo-motor. A thruster modulation technique PWM(Pulse Width Modulation) employing a time-optimal switching function plus integral error control is proposed. An optical camera is used for the purpose of pointing as well as on-board rate sensor calibration. Attitude control performance based upon the new closed-loop control law is demonstrated by ground experiment. The modified switching function turns out to be effective with improved pointing performance under external disturbance. The rate sensor calibration technique by Kalman Filter algorithm led to reduction of attitude error caused by the bias in the rate sensor output.

Development of Speed Estimation Algorithm for Low-effecting of T.G Ripple by Using Generalized Observation Technique (일반화 관측기법을 이용한 T.G 리플의 영향력 감소를 위한 속도추정 알고리즘)

  • Kim, H.S.;Lee, C.H.;Kim, S.B.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.55-59
    • /
    • 1999
  • Generally, T.G(Tacho-generator, Tachometer) sensor is used widely for sensing the angular velocity in rotary machine. By limitation of T.G sensor's structure, the sensed angular velocity include a periodic noise, and the noise is called "ripple" as an electrical term. To reduce the effecting of the ripple, many kinds of filters are designed and installed, but there is necessary a trade off between response time and adapted frequency band. In this paper, we propose a generalized observer to estimate an angular velocity from the output signal of T.G sensor. The generalized observer is proposed firstly for continue systems, and it is applied to DC servo motor with T.G sensor. For simulation, we measure T.G signals at 60, 400, 570 rpm respectively, and analysis those to obtain the resonance frequency of ripple by FFT method. To verify the effectiveness of the proposed algorithm, we compare the results with those of a RC low frequency band filter.

  • PDF

Magnetic Sensor Using Giant Magneto-Impedance Effect (거대자기임피던스 효과를 이용한 자기 센서)

  • Choi, Kyoo-Nam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1057-1064
    • /
    • 2017
  • High sensitivity magnetic sensor having foreign metal detection capability is proposed utilizing giant magneto-impedance effect. Strip sensor showed the increasing output voltage when the external magnetic field was applied along with strip from strip grounding point, although the initial DC voltage varied depending on the pointing direction of strip sensor. Proposed sensor was able to eliminate more than half of background noise using active noise filter to achive high sensitivity, and it showed the capability to detect magnetized foreign metal object independent of ambient electro-magnetic noise and earth magnet. In case of ferrous sphere, the metal detection up to 0.8mm diameter was experimentally demonstrated at 5mm distance from strip sensor.

Output Characteristic of Zinc Vapour Laser With Capacitively Coupled Radio Frequency Excitation (용량결합고주파여기 아연증기레이저의 출력특성)

  • Choi, Sang-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • From a CCRF-excited zinc vapour laser with overlapped DC-discharge were emitted following 6 laser lines: two blue at 491.162[nm] and 492.403[nm], an orange at 589.433[nm] and three infrared lines at 747.879[nm], 758.848[nm] and 773.25[nm]. The discharge parameters were determined for an optimal laser operation. At a RF-power of 400[W] with the frequency 13.56[MHz] the optimal temperature of the oven lay between 780[K] and 800[K], the He-pressure between 3.5[kPa] and 5.5[kPa].

A Ripple-free Input Current Interleaved Converter with Dual Coupled Inductors for High Step-up Applications

  • Hu, Xuefeng;Zhang, Meng;Li, Yongchao;Li, Linpeng;Wu, Guiyang
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.590-600
    • /
    • 2017
  • This paper presents a ripple-free input current modified interleaved boost converter for high step-up applications. By integrating dual coupled inductors and voltage multiplier techniques, the proposed converter can reach a high step-up gain without an extremely high turn-ON period. In addition, a very small auxiliary inductor employed in series to the input dc source makes the input current ripple theoretically decreased to zero, which simplifies the design of the electromagnetic interference (EMI) filter. In addition, the voltage stresses on the semiconductor devices of the proposed converter are efficiently reduced, which makes high performance MOSFETs with low voltage rated and low resistance $r_{DS}$(ON) available to reduce the cost and conduction loss. The operating principles and steady-state analyses of the proposed converter are introduced in detail. Finally, a prototype circuit rated at 400W with a 42-50V input voltage and a 400V output voltage is built and tested to verify the effectiveness of theoretical analysis. Experimental results show that an efficiency of 95.3% can be achieved.

Leakage Current Energy Harvesting Application in a Photovoltaic (PV) Panel Transformerless Inverter System

  • Khan, Md. Noman Habib;Khan, Sheroz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.190-194
    • /
    • 2017
  • Present-day solar panels incorporate inverters as their core components. Switching devices driven by specialized power controllers are operated in a transformerless inverter topology. However, some challenges associated with this configuration include the absence of isolation, causing leakage currents to flow through various components toward ground. This inevitably causes power losses, often being also the primary reason for the power inverters' analog equipment failure. In this paper, various aspects of the leakage currents are studied using different circuit analysis methods. The primary objective is to convert the leakage current energy into a usable DC voltage source. The research is focused on harvesting the leakage currents for producing circa 1.1 V, derived from recently developed rectifier circuits, and driving a $200{\Omega}$ load with a power in the milliwatt range. Even though the output voltage level is low, the harvested power could be used for charging small batteries or capacitors, even driving light loads.