• Title/Summary/Keyword: DC Output Filter

Search Result 194, Processing Time 0.028 seconds

The Control of Single Phase AC/DC Converter by using Binary Combination (바이너리 조합에 의한 단상 AC/DC 컨버터의 제어)

  • Park, S.W.;Chun, J.H.;Woo, J.I.;Kim, J.H.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1336-1338
    • /
    • 2000
  • This paper proposed the single phase multi-level PWM AC/DC converter using binary combine which controls input current by combining buck converters to improve input current characteristic, and confirmed its validity throughout simulation and experiment. This method, which is multiplying and duplicating output of converter of equal capacity, has the advantage of being able to control unit power factor of input current and reducing of the problem caused by high frequency switching, and appling to high power converter because filter is not necessary etc.

  • PDF

PWAM Based THD Reduction of Inverter for Air-Conditioning Blower (PWAM 방식을 이용한 공조시스템용 인버터의 THD 저감 방법)

  • Lim, Seung-Beom;Lee, Yun-Ha;Zun, Chan-Yong
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.97-98
    • /
    • 2011
  • The HVAC(Heating Ventilation and Air conditioning) system is controlled by two ways, one is ON/OFF control and the other is PWM inverter with V/F. Control of blower with the use of PWM inverter has quite some benefits such as the capability of changing speed, high efficiency and reduced noise level compared with ON/OFF control. But if blower is operated at low speed, high THD generated by decrease of ma, and output voltage lowered in proportion to frequency. To solve these problems, filter should be installed at the output stage of inverter, which can decrease THD but has problems such as increase of volume size and additional braking resistance. This paper proposes the PWAM method which can reduce THD instead of installing the filter at the output stage of inverter. The proposed PWAM method is an inverter modulation method that fixes the modulation index of inverter to reduce THD by varying DC link voltage of inverter unlike conventional PWM method. Finally, the validity of proposed PWAM methods verified by experiments.

  • PDF

Study of Single Stage PFC DCM Flyback Power Supply for a LED Lamp (LED 램프를 위한 불연속 모드를 갖는 단일단 PFC 플라이백 파워서플라이의 연구)

  • La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.285-291
    • /
    • 2016
  • A light-emitting diode (LED) has been increasingly applied to various industrial fields and general lightings because of its high efficiency, low power consumption, environment-friendly characteristic and long lifetime. To drive the LED lighting, a power converter with the constant output current is needed. Among many power converters, the flyback converter is chosen by many converter designers due to high power density, structural simplicity, and miniaturization. In this converter, an electrolytic capacitor is generally chosen for the stabilization of the DC voltage because of having the large capacitance and the low price. However, the disadvantages are the short expected life time and 120Hz ripple currents on the converter output node. In this paper, a single-stage dimmable PFC DCM flyback converter without the electrolytic capacitor is proposed to prolong the lifetime of the LED driver. For the long lifetime of the converter, the polyester film capacitor with the small capacitance is substituted for the electrolytic capacitor on the output node and an LC resonant filter is added to damp 120Hz ripple current. The proposed converter is verified through the simulation and the experimental works.

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

  • Lee, Chan-Soo;Kim, Eui-Jin;Gendensuren, Munkhsuld;Kim, Nam-Soo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.262-266
    • /
    • 2011
  • A simulation study of a current-mode direct current (DC)-DC boost converter is presented in this paper. This converter, with a fully-integrated power module, is implemented by using bipolar complementary metal-oxide semiconductor (BiCMOS) technology. The current-sensing circuit has an op-amp to achieve high accuracy. With the sense metal-oxide semiconductor field-effect transistor (MOSFET) in the current sensor, the sensed inductor current with the internal ramp signal can be used for feedback control. In addition, BiCMOS technology is applied to the converter, for accurate current sensing and low power consumption. The DC-DC converter is designed with a standard 0.35 ${\mu}m$ BiCMOS process. The off-chip inductor-capacitor (LC) filter is operated with an inductance of 1 mH and a capacitance of 12.5 nF. Simulation results show the high performance of the current-sensing circuit and the validity of the BiCMOS converter. The output voltage is found to be 4.1 V with a ripple ratio of 1.5% at the duty ratio of 0.3. The sensing current is measured to be within 1 mA and follows to fit the order of the aspect ratio, between sensing and power FET.

A Study on Power Conversion System for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환장치에 관한 연구)

  • Kim, Ju-Yong;Jung, Sang-Hwa;Mun, Sang-Pil;Ryu, Jae-Yup;Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.10-24
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V]. In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch $S_5\;and\;S_6$ in the secondary switch which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household

Design and Feedback Performance Analysis of the Inverter-side LC Filters Used in the DVR System (DVR시스템에 사용되는 인버터부의 LC필터 설계와 피드백 성능분석)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.79-84
    • /
    • 2015
  • Voltage sags are considered the dominant disturbances affecting power quality. Dynamic voltage restorers(DVRs) are mainly used to protect sensitive loads from the electrical network voltage disturbances such as sags or swells and could be used to reduce harmonic distortion of ac voltages. The typical DVR topology essentially contains a PWM inverter with LC Filter, an injection transformer connected between the ac voltage line and the sensitive load, and a DC energy storage device. For injecting series voltage, the PWM inverter is used and the passive filter consist of inductor(L) and capacitor(C) for harmonics elimination of the inverter. However there are voltage pulsation responses by the characteristic of the LC passive filter that eliminate the harmonics of the PWM output waveform of the inverter. Therefore, this paper presented design and feedback performance of LC filter used in the DVRs. The voltage control by LC filter should be connected in the line side since this feedback method allows a relatively faster dynamic response, enabling the elimination of voltage notches or spikes in the beginning and in the end of sags and strong load voltage THD reduction. Illustrative examples are also included.

Voltage Control of PWM Converter Using Nonlinear Control (비선형 제어기법을 이용한 PWM 컨버터의 전압제어)

  • Lee, Ki-Do;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.463-465
    • /
    • 1997
  • For fast response of the dc output voltage in PWM converter, the relationship of power balance of both the input and output should be introduced to the system modeling. Then, a nonlinear control theory using state feedback linearization is useful to control the system. By nonlinear control, the voltage response can be fast, so the size of the output filter capacitor can be reduced as long as the same response is kept. The validity of the proposed scheme is shown from the simulation results.

  • PDF

A multilevel PWM Inverter for Harmonics Reduction (고조파 저감을 위한 다중 레벨 PWM 인버터)

  • Kang, Feel-Soon;Park, Sung-Jun;Kim, Cheol-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.645-651
    • /
    • 2002
  • In this paper, a multilevel PWM inverter employing a cascaded transformer is presented to reduce the harmonics of output voltage and load currents. The proposed PWM inverter consists of two full-bridge modules and their corresponding transformers. The secondarics of each transformer are series-connected. So continuous output voltage levels can be synthesized from the suitable selection of the turns ratio of trasformer. And it appears an integral ratio to input DC source. Because of the cascaded connection of transformers, output filter inductor is not necessary. The operational principles and analysis are explained, and it is compared with a conventional isolated H-bridge PWM inverter. The validity of proposed multilevel inverter is verified through simulated and experimental waveform and their FFT results.

Accuracy Enhancement Technique in the Current-Attenuator Circuit (전류 감쇠 조정 회로에서의 정밀도 향상 기술)

  • Kim, Seong-Kweon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.116-121
    • /
    • 2005
  • To realize the tap coefficient of a finite impulse response(FIR) filter or the twiddle factor of a fast Fourier transform(FFT) using a current-mode analog circuit, a high accurate current-attenuator circuit is needed This paper introduces an accuracy enhancement technique in the current-mode signal processing. First of all, the DC of set-current error in a conventional current-attenuator using a gate-ratioed orient mirror circuit is analyzed and then, the current-attenuator circuit with a negligibly small DC offset-current error is introduced. The circuit consists of N-output current mirrors connected in parallel with me another. The output current of the circuit is attenuated to 1/N of the input current. On the basis of the Kirchhoff current law, the current scale ratio is determined simply by the number of the current mirrors in the N-current mirrors connected in parallel. In the proposed current-attenuator circuit the scale accuracy is limited by the ac gain error of the current mirror. Considering that a current mirror has a negligibly small ac gain error, the attainable maximum scale accuracy is theoretically -80[dB] to the input current.

A Simulation Investigation on the Spurious Emission Reduction of the Automotive DC-DC Converter (자동차용 DC-DC 컨버터의 전자파 방사 감소 방법에 대한 시뮬레이션 연구)

  • Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.47-52
    • /
    • 2020
  • In this study, a simulation investigation was conducted on the method of reducing switching noise and spurious emission among design methods for step-down DC-DC converter modules for automotive. A typical 4-layer converter circuit using a PMIC(Power Management Integrated Circuit) chip was presented, and the simulation results of conductive emissions at two input terminals (+, -) and the point between the input filter and the PMIC was performed in the 1.0~5.0MHz band and the 100MHz band. The results for the conducted and radiated emissions in the HF(3~30MHz) and VHF(30-300MHz) bands were presented. It showed an improvement of about 10dB over the bands by routing the output terminal placed on the 3 or 4-layer in the opposite direction to the input terminal. The result of this study is expected to be useful in the design of the DC-DC converter modules in the future because it gives a better improvement compared to the existing methods.