• Title/Summary/Keyword: DC - DC converters

Search Result 840, Processing Time 0.037 seconds

Input Impedances of PWM DC-DC Converters: Unified Analysis and Application Example

  • Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2045-2056
    • /
    • 2016
  • The input impedances of pulse width modulated (PWM) dc-to-dc converters, which dictate the outcomes of the dynamic interaction between dc-to-dc converters and their source subsystem, are analyzed in a general and unified manner. The input impedances of three basic PWM dc-to-dc converters are derived with both voltage mode control and current mode control. This paper presents the analytical expressions of the 24 input impedances of three basic PWM dc-to-dc converters with the two different control schemes in a factorized time-constant form. It also provides a comprehensive reference for future dynamic interaction analyses requiring knowledge of the converters' input impedances. The theoretical predictions of the paper are all supported by measurements on prototype dc-to-dc converters. The use of the presented results is demonstrated via a practical application example, which analyzes the small-signal dynamics of an input-filter coupled current-mode controlled buck converter. This elucidates the theoretical background for the previously-reported eccentric behavior of the converter.

Digital Control Strategy for Input-Series-Output-Parallel Modular DC/DC Converters

  • Sha, Deshang;Guo, Zhiqiang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.245-250
    • /
    • 2010
  • Input-series-output-parallel (ISOP) converters consisting of multiple modular DC/DC converters can enable low voltage rating switches to be used under high voltage input applications. This paper presents a digital control strategy, which can achieve equal sharing of input voltage for a modular ISOP system consisting of two-transistor forward DC/DC converters by forcing the input voltages of neighboring modules to be equal. The proposed scheme is analyzed using small signals analysis based on the state space average method. The performance of the proposed control strategy is verified with an experimental prototype of an ISOP converter made up of three two-switch forward converters.

Improved Control Strategy for T-type Isolated DC/DC Converters

  • Liu, Dong;Deng, Fujin;Wang, Yanbo;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.874-883
    • /
    • 2017
  • T-type isolated DC/DC converters have recently attracted attention due to their numerous advantages, including few components, low cost, and symmetrical operation of transformers. This study proposes an improved control strategy for increasing the efficiency of T-type isolated DC/DC converters. Under the proposed strategy, the primary circulating current flows through the auxiliary switches (metal-oxide-semiconductor field-effect transistors) instead of their body diodes in free-wheeling periods. Such feature can reduce conduction losses, thereby improving the efficiency of T-type isolated DC/DC converters. The operation principles and performances of T-type isolated DC/DC converters under the proposed control strategy are analyzed in detail and verified through the simulation and experimental results.

Master-Slave type DC-DC Converters Parallel Operation by ZCT method (ZCT방식의 master-slave형 DC-DC컨버터 병렬운전)

  • 박상은;송승찬;진정태;이기홍;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.655-658
    • /
    • 1999
  • In this paper, Parallel operation of two DC-DC converters which we have ever done before need two CTs to do load current sharing. However, we have proposed a new method called ZCT method that can share load current with only a CT as doing parallel operation two converters with same converter capacity. To confirm parallel performance by a proposed DC-DC converter parallel operation method, we have done computer simulation and experiment. It is certain that we have showed to achieve two converters current sharing performance efficiently through simulation and experiment at result.

  • PDF

Novel Self-Excited DC-DC Converters (새로운 자려식 DC-DC 컨버터)

  • Lee, Soung-Ju;Ahn, Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2505-2507
    • /
    • 1999
  • This paper presents novel self excited DC-DC converters such as Buck-boost type, Buck type and also non-inverting Buck-boost type. The proposed converters has the following advantages: simple topology, small number of circuit components, easy control methode. Therefore, these converters are suitable for the portable appliances with battery source. Theoretical analysis and experimental results for SOW class Buck-boost type self oscillation DC-DC converter have been obtained, which demonstrate the high efficiency and good performance.

  • PDF

Input Voltage Sharing Control for Input-Series-Output-Parallel DC-DC Converters without Input Voltage Sensors

  • Guo, Zhiqiang;Sha, Deshang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.83-87
    • /
    • 2012
  • Input-series-output-parallel (ISOP) modular converters consisting of multiple modular DC/DC converters can enable low voltage rating switches for use in high voltage input applications. In this paper, an input voltage sharing control strategy for input-series-output-parallel (ISOP) full-bridge (FB) DC/DC converters is proposed. By sensing the difference in the input current of two modules, the system can achieve input voltage sharing for DC-DC modules. The effectiveness of the proposed control strategy is verified by simulation and experimental results obtained with a 200w-50kHz prototype.

Super-Lift DC-DC Converters: Graphical Analysis and Modelling

  • Zhu, Miao;Luo, Fang Lin
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.854-865
    • /
    • 2009
  • Super-lift dc-dc converters are a series of advanced step-up dc-dc topologies that provide high voltage transfer gains by super-lift techniques. This paper presents a developed graphical modelling method for super-lift converters and gives a thorough analysis with a consideration of the effects caused by parasitic parameters and diodes' forward voltage drop. The general guidelines for constructing and deriving graphical models are provided for system analysis. By applying it to examples, the proposed method shows the advantages of high convenience and feasibility. Both the circuit simulation and experimental results are given to support the theoretical analysis.

Stabilizing Control of DC/DC Buck Converters with Constant Power Loads in Continuous Conduction and Discontinuous Conduction Modes Using Digital Power Alignment Technique

  • Khaligh Alireza;Emadi Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.63-72
    • /
    • 2006
  • The purpose of this raper is to address the negative impedance instability in DC/DC converters. We present the negative impedance instability of PWM DC/DC converters loaded by constant power loads (CPLs). An approach to design digital controllers for DC/DC converters Is presented. The proposed method, called Power Alignment control technique, is applied to DC/DC step-down choppers operating in continuous conduction or discontinuous conduction modes with CPLs. This approach uses two predefined state variables instead of conventional pulse width modulation (PWM) to regulate the output voltage. A comparator compares actual output voltage with the reference and then switches between the appropriate states. It needs few logic gates and comparators to be implemented thus, making it extremely simple and easy to develop using a low-cost application specific integrated circuit (ASIC) for converters with CPLs. Furthermore, stability of the proposed controllers using the small signal analysis as well as the second theorem of Lyapunov is verified. Finally, simulation and analytical results are presented to describe and verify the proposed technique.

A Comparative Study of Simple Ac-Dc PWM Full-Bridge Current-Fed and Voltage-Fed Converters

  • Moschopoulos Gerry;Shah Jayesh
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.246-255
    • /
    • 2004
  • Ac-dc PWM single-stage converters that integrate the PFC and dc-dc conversion functions in a single switching converter have been proposed to try to minimize the cost and complexity associated with implementing two separate and independent switch-mode converters. In this paper, two simple ac-dc single-stage PWM full-bridge converters are considered - one current-fed, the other voltage-fed. The operation of both converters is explained and their properties are noted. Experimental results obtained from simple lab prototypes of both converters are presented, then compared and discussed.

Symmetrical Cockcroft-Walton circuit for Transformerless High Step-Up DC-DC Converter (변압기 없는 고승압 직류 컨버터용 대칭형 Cockcroft-Walton 회로)

  • Cha, Dae-Joong;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.70-75
    • /
    • 2015
  • High Step-up DC-DC Converters have been demanded for renewable energy applications. Transformer or coupled inductor is generally used to boost output voltage of converters. This methods can relatively obtain high voltage than others, whereas have heavy weight and high cost. To complement these disadvantages, we studied transformerless high step-up DC-DC converter. In various transformerless topologies, Boost converters combined with Cockcroft-Walton have studied. In this paper, we proposed a symmetrical Cockcroft-Walton circuit for transformerless high step-up DC-DC converter. Finally, we simulated proposed converter to compare with existing converter. As a result, proposed converter has higher duty ratio or lower cost than existing transformerless converters which are discussed in this paper.