• Title/Summary/Keyword: DC/DC Converters

Search Result 840, Processing Time 0.026 seconds

A Study on the Design of a Control Circuit for Three- Phase Full Bridge Converter Using Microprocessor (마이크로프로세서를 이용한 3상 브리지 콘버터의 제어회로 설계에 관한 연구)

  • 노창주;김윤식;김영길;유진열;류승각
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.102-112
    • /
    • 1992
  • The three-phase full(6-pulse) bridge controlled rectifier is one of the most widely used types of solid-state converters in DC drive applications for higher performance. In most of the previous designs, the gate control circuits of the converter have been designed with analog method which can be easily affected by noise. Nowdays with advances of microelectronics and power electronics, microprocessor and pheripal LSIs are increasingly used for eliminating this problems. In this paper, a novel general-purpose microprocessor -based firing system and control scheme for a three-phase controlled rectifier bridge has been developed and tested. Using the phase relations between ${\Delta}$-Y transformer in power operation part, gate pulse of the converter is generated with real time process so that microprocessor may share its time to control algorithms efficiently. The firing angle of the converter is smoothly controlled in the range of 0 $^{\dirc}$ to 180$^{\dirc}$ with a fast respone and a constant open loop gain, even for the case where the converter is fed by a weak AC system of unregulated frequency. The hardware and software control circuit implementation built around a 80286 microprocessor is discussed, and the experimental results are given. This scheme uses less hardware components and has higher dynamic performance in variable speed DC drive applications.

  • PDF

LCD Backlight Drive Using The Piezoelectric Transformer (압전변압기를 이용한 LCD Backlight 구동)

  • 임성운;최연호;원철호;구본호;김이국
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.28-33
    • /
    • 2003
  • The piezoelectric transformer converters electrical energy into mechanical energy, It is high efficiency and small size transformer for high output voltage. The piezoelectric transformer operates the resonance frequency and the output voltage waveform is close to sine wave. Therefore, it is suitable for driving the LCD backlight in the notebook computer. In this paper, we discussed about the inverter which os driving piezoelectric transformer by generating sine wave through LC resonance after converting input DC voltage to the gate signal of FET. As the result of experiments, it was showed that the resonance frequency and voltage gain of the piezoelectric transformer was proportional to the load variation, and voltage gain was independent of the input voltage variation.

Compensation of Unbalanced Phase Currents in Interleaved Bi-directional Converter with DC Link Current Sensed (직류링크 전류를 이용한 인터리브드 양방향 컨버터의 상전류 불균형 보상 방법)

  • Han, Jungho;Choi, Yuhyon;Song, Joongho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.90-97
    • /
    • 2014
  • This paper presents a compensation method of unbalanced phase currents in interleaved bi-directional converters. Phase currents in interleaved bi-directional converter are apt to be unbalanced due to circuit parameter error and switch operation difference. This problem causes the switch element failure and the reduced efficiency of the converter. Therefore, it is necessary that a certain balance control algorithm is provided in interleaved bi-directional converter system. In this paper, a balance control algorithm based on the circular chain control method is proposed. Further, in order to reduce the number of phase current sensors, this paper shows a simple method in which phase currents can be extracted indirectly through a DC-link current sensor in both charging and discharging modes. The validity and the effectiveness of the proposed phase currents balance control algorithm are illustrated through the simulation results.

Control Model of 1 kW Class Tactical Hybrid Power Generation System with Liquid Fuel Processor (야전용 액체 연료개질 1 kW급 하이브리드 전원시스템 제어 연구)

  • Ji, Hyun-Jin;Ha, Sang-Hyun;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.732-739
    • /
    • 2011
  • A fuel cell/secondary battery hybrid power generation system could extend well beyond the efficiency and interoperability of the conventional diesel generator. The suggested power source system consists of 2.3 kW class PEMFC, 100 Ah lithium polymer battery, and two DC/DC converters by serial connection type. It was known that interoperability of sub-systems is the key factor for stable and optimal control of the hybrid power generation system. The modeling and simulation methods have been proposed to reduce the number of configurations and performance tests for components selection and select the optimized control condition of the power generation system. The control model for power source system is implemented based on the empirical formulation and carried out in the Matlab/Simulink environment. The results show that the simulation can be used to establish the algorism of prototype and increase the durability of the power source system.

Power System and Drive-Train for Omni-Directional Autonomous Mobile Robots with Multiple Energy Storage Units

  • Ghaderi, Ahmad;Nassiraei, Amir A.F;Sanada, Atsushi;Ishii, Kazuo;Godler, Ivan
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.291-300
    • /
    • 2008
  • In this paper power system and drive-train for omni-directional autonomous mobile robots with multiple energy storage units are presented. Because in proposed system, which is implemented in soccer robots, the ability of power flow control from of multiple separated energy storage units and speed control for each motor are combined, these robots can be derived by more than one power source. This capability, allow robot to diversify its energy source by employing hybrid power sources. In this research Lithium ion polymer batteries have been used for main and auxiliary energy storage units because of their high power and energy densities. And to protect them against deep discharge, over current and short circuit, a protection circuit was designed. The other parts of our robot power system are DC-DC converters and kicker circuit. The simulation and experimental results show proposed scheme and extracted equations are valid and energy management and speed control can be achieved properly using this method. The filed experiments show robot mobility functions to perform the requested motion is enough and it has a high maneuverability in the field.

Improving the Overall Efficiency for DC/DC Converter with LoV-HiC System

  • Han, Dong-Hwa;Lee, Young-Jin;Kwon, Wan-Sung;Bou-Rabee, Mohammed A.;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.418-428
    • /
    • 2012
  • It is very important to improve the overall efficiency of systems with a source of power that has low-voltage high-current terminal characteristics such as fuel cells. A resonant converter is required for high efficiency systems. However, the peak value of the switches current is large in a resonant converter. This peak current requires a large number of switches and results in system failures. In this paper, an analysis and experiments of a resonant isolation push-pull converter are performed. A switching loss analysis is performed in order to compare losses between a resonant push pull converter and a hard switching push-pull converter. Specially, the conduction loss is studied based on the ratio between the resonant frequency and the switching frequency. In addition, a method for improving the efficiency is implemented with conventional HF insolation converters.

Study on the LED BLU Driving Circuit with a Local-dimming Structure (다분할 디밍구조를 갖는 LED BLU 구동회로에 관한 연구)

  • Park, Yu-Cheol;Kim, Hee-Jun;Chae, Gyun;Baek, Ju-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.292-300
    • /
    • 2009
  • This paper presents an LED BLU driving circuit with a local-dimming structure. The efficiency of the proposed LED driver has been improved by parallel driving 8 serial-connected LED arrays. It employed the soft-switching boost converter topology to reduce the switching power loss of the hard switching boost converter. Soft- and hard-switching converters have the same structure except that the free-wheeling diode in the hard-switching converter is replaced with the n-channel MOSFET in the soft-switching one. The proposed boost converter was compared with the hard switching converter. The soft-switching converter reveals superior ripple and efficiency. A smaller inductance can be used for the soft-switching converter contrasting to the hard-switching one. We also studied on an over-voltage protection circuit of the output of the driver at the no load condition. The protection circuit was applied to the proposed driver, and its operation was confirmed by experiment. Using a local-dimming technique, power consumption of LCD BLUs can be reduced as low as possible according to the brightness of its image.

Analysis of PWM Converter for V-I Output Characteristics of Solar Cell

  • Han, Jeong-Man;Jeong, Byung-Hwan;Gho, Jae-Seok;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.62-67
    • /
    • 2003
  • Recently, photovoltaic system has been studied widely as a renewable energy system, because it does not produce environmental pollution and it has infinity energy source from the sun. A study on photovoltaic system has a lot of problems like as reappearance and repetition of some situation in the laboratory experiment for development of MPPT algorithm and islanding detection algorithm. because output characteristics of solar cell are varied by irradiation and surface temperature of solar cell. Therefore, the assistant equipment which emulates the solar cell characteristics which can be controlled arbitrarily by researcher is require to the researchers for reliable experimental data. In this paper, the virtual implement of solar cell (VISC) system is proposed to solve these problems and to achieve reliable experimental result on photovoltaic system. VISC system emulates the solar cell output characteristics, and this system can substitute solar cell in laboratory experiment system. To realize the VISC, mathematical model of solar cell is studied for driving converter and the DC/DC converters are compared in viewpoint of tracking error using computer simulation. Output dynamic characteristic of PV array is varied by irradiation and PWM converter performance is studied using PSIM simulator.

Half-Bridge Zero Voltage Switching Converter with Three Resonant Tanks

  • Lin, Bor-Ren;Lin, Wei-Jie
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.882-889
    • /
    • 2014
  • This paper presents a zero voltage switching (ZVS) converter with three resonant tanks. The main advantages of the proposed converter are its ability to reduce the switching losses on the power semiconductors, decrease the current stress of the passive components at the primary side, and reduce the transformer secondary windings. Three resonant converters with the same power switches are adopted at the low voltage side to reduce the current rating on the transformer windings. Using a series-connection of the transformer secondary windings, the primary side currents of the three resonant circuits are balanced to share the load power. As a result, the size of both the transformer core and the bobbin are reduced. Based on the circuit characteristics of the resonant converter, the power switches are turned on at ZVS. The rectifier diodes can be turned off at zero current switching (ZCS) if the switching frequency is less than the series resonant frequency. Therefore, the reverse recovery losses on the rectifier diodes are overcome. Experiments with a 1.6kW prototype are presented to verify the effectiveness of the proposed converter.

Split-Capacitor Dual-Active-Bridge Converter (Split-Capacitor Dual-Active-Bridge 컨버터)

  • Kim, Kisu;Park, Siho;Cha, Honnyong;Choi, Byungcho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.352-358
    • /
    • 2018
  • A split-capacitor (SC) dual-active-bridge (DAB) converter is proposed in this study. The DC-link capacitors of input and output are split in the proposed converter. The primary and secondary windings of transformer are connected to the midpoints of the DC-links. Hence, the SC DAB converter can inherently prevent transformer from saturation. Although the switch current stress of the proposed converter is twice that of the conventional DAB converter, the switch voltage stress is reduced by half. Therefore, the proposed converter can reduce switching loss and achieve high efficiency in a high switching frequency. Given the SC structure, the proposed converter can readily be connected to neutral-point-clamped- or half-bridge-type converters. The topology of the proposed converter is presented and the operating principle is analyzed in detail. A 3-kW hardware prototype was built and tested to verify the performance of the proposed converter.