A Study on the Design of a Control Circuit for Three- Phase Full Bridge Converter Using Microprocessor

마이크로프로세서를 이용한 3상 브리지 콘버터의 제어회로 설계에 관한 연구

  • Published : 1992.08.01

Abstract

The three-phase full(6-pulse) bridge controlled rectifier is one of the most widely used types of solid-state converters in DC drive applications for higher performance. In most of the previous designs, the gate control circuits of the converter have been designed with analog method which can be easily affected by noise. Nowdays with advances of microelectronics and power electronics, microprocessor and pheripal LSIs are increasingly used for eliminating this problems. In this paper, a novel general-purpose microprocessor -based firing system and control scheme for a three-phase controlled rectifier bridge has been developed and tested. Using the phase relations between ${\Delta}$-Y transformer in power operation part, gate pulse of the converter is generated with real time process so that microprocessor may share its time to control algorithms efficiently. The firing angle of the converter is smoothly controlled in the range of 0 $^{\dirc}$ to 180$^{\dirc}$ with a fast respone and a constant open loop gain, even for the case where the converter is fed by a weak AC system of unregulated frequency. The hardware and software control circuit implementation built around a 80286 microprocessor is discussed, and the experimental results are given. This scheme uses less hardware components and has higher dynamic performance in variable speed DC drive applications.

Keywords