• Title/Summary/Keyword: DBSCAN

Search Result 65, Processing Time 0.03 seconds

A Method of Extracting Features of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Sanyeon Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.191-199
    • /
    • 2023
  • In this paper, we propose a method to extract the features of five sensor-only facilities built as infrastructure for autonomous cooperative driving, which are from point cloud data acquired by LiDAR. In the case of image acquisition sensors installed in autonomous vehicles, the acquisition data is inconsistent due to the climatic environment and camera characteristics, so LiDAR sensor was applied to replace them. In addition, high-intensity reflectors were designed and attached to each facility to make it easier to distinguish it from other existing facilities with LiDAR. From the five sensor-only facilities developed and the point cloud data acquired by the data acquisition system, feature points were extracted based on the average reflective intensity of the high-intensity reflective paper attached to the facility, clustered by the DBSCAN method, and changed to two-dimensional coordinates by a projection method. The features of the facility at each distance consist of three-dimensional point coordinates, two-dimensional projected coordinates, and reflection intensity, and will be used as training data for a model for facility recognition to be developed in the future.

A Study on the Applicability of Machine Learning Algorithms for Detecting Hydraulic Outliers in a Borehole (시추공 수리 이상점 탐지를 위한 기계학습 알고리즘의 적용성 연구)

  • Seungbeom Choi; Kyung-Woo Park;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.561-573
    • /
    • 2023
  • Korea Atomic Energy Research Institute (KAERI) constructed the KURT (KAERI Underground Research Tunnel) to analyze the hydrogeological/geochemical characteristics of deep rock mass. Numerous boreholes have been drilled to conduct various field tests. The selection of suitable investigation intervals within a borehole is of great importance. When objectives are centered around hydraulic flow and groundwater sampling, intervals with sufficient groundwater flow are the most suitable. This study defines such points as hydraulic outliers and aimed to detect them using borehole geophysical logging data (temperature and EC) from a 1 km depth borehole. For systematic and efficient outlier detection, machine learning algorithms, such as DBSCAN, OCSVM, kNN, and isolation forest, were applied and their applicability was assessed. Following data preprocessing and algorithm optimization, the four algorithms detected 55, 12, 52, and 68 outliers, respectively. Though this study confirms applicability of the machine learning algorithms, it is suggested that further verification and supplements are desirable since the input data were relatively limited.

Detection of Abnormal Region of Skin using Gabor Filter and Density-based Spatial Clustering of Applications with Noise (가버 필터와 밀도 기반 공간 클러스터링을 이용한 피부의 이상 영역 검출)

  • Jeon, Minseong;Cheoi, Kyungjoo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 2018
  • In this paper, we suggest a new system that detects abnormal region of skim. First, an illumination elimination algorithm which uses LAB color model is processed on input facial image to obtain robust facial image for illumination, and then gabor filter is processed to detect the reactivity of discontinuity. And last, the density-based spatial clustering of applications with noise(DBSCAN) algorithm is processed to classify areas of wrinkles, dots, and other skin diseases. This method allows the user to check the skin condition of the images taken in real life.

CNN Based Lithography Hotspot Detection

  • Shin, Moojoon;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.208-215
    • /
    • 2016
  • The lithography hotspot detection process is crucial for semiconductor design development process. But, the lithography hotspot detection using optical simulation method takes much time and it slowdown the layout design development cycle. Though the geometry based approach is introduced as an alternative, it still revealed low detection performance and sophisticated framework. To solve this problem, we introduce a deep convolutional neural network based hotspot detection method. Our method made better results in ICCCAD 2012 dataset. To reach this score, we used lots of technical effort to improve the result in addition to just utilizing the nature of convolutional neural network. Inspection region reduction, data augmentation, DBSCAN clustering helped our work more stable and faster.

Clustered Hash Index-based Skyline Query (해시 색인 군집화 기반 스카이라인 질의)

  • Choi, Jong-Hyeok;Nasridinov, Aziz
    • Proceedings of The KACE
    • /
    • 2018.01a
    • /
    • pp.45-48
    • /
    • 2018
  • 스카이라인 질의는 지배라는 개념을 활용, 주어진 데이터로부터 데이터를 대표할 수 있는 데이터들을 탐색하기 때문에 사용자의 요청에 부합하는 최적의 결과를 탐색하거나 기업에서 의사결정을 이루기 위해 사용되는 등 넓은 활용을 보이고 있다. 하지만 스카이라인 질의는 데이터의 차원이 증가하는 경우 전체적인 성능의 감소와 함께 스카이라인으로 선택되는 데이터의 수가 급증하여 사용자에게 유용한 결과를 반환하지 못하게 된다. 이러한 문제를 해결하기 위해 최근에는 Top-k 질의 기반의 방식이나 군집화 기반의 기법을 적용한 방식의 스카이라인 질의들이 새롭게 제안되고 있지만 이들은 데이터의 편향이나 사용자로부터 입력된 k에 큰 영향을 받는 등 해당 질의 결과가 데이터들을 충분히 대표하거나 다양성을 만족시키지 못했다. 이러한 문제를 해결하기 위해 본 논문에서는 해시 색인 기법과 군집화 기법인 DBSCAN을 통해 주어진 데이터들을 충분히 대표함과 동시에 다양성을 만족할 수 있는 새로운 방식의 스카이라인인 CHI-SQ의 이론적 배경을 제안하고자 한다.

  • PDF

GPS Data Partitioning Method for POI Extraction Based MapReduce (MapReduce 기반 POI를 추출하기 위한 GPS 데이터 분할 방법)

  • Oh, Joo-Seong;Jeon, Hye-Ji;Lee, Hye-Jin;Jeong, Min-A;Lee, Seong-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1199-1201
    • /
    • 2015
  • 위치 기반 서비스는 여러 분야에서 활용되어지고 있다. 사용자들에게 정확한 정보를 제공하기 위해서는 대량의 위치 데이터를 분석하여 POI를 추출하고 분석해야 된다. 본 논문에서는 POI를 추출하는 방법으로 DBSCAN 클러스터링을 이용하고 이를 MapReduce 환경에서 구현한다. 또한 알고리즘의 수행속도를 향상시키기위해 데이터를 분할하는 방법을 제안한다.

A Study on Representative Skyline Using Connected Component Clustering

  • Choi, Jong-Hyeok;Nasridinov, Aziz
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.37-42
    • /
    • 2019
  • Skyline queries are used in a variety of fields to make optimal decisions. However, as the volume of data and the dimension of the data increase, the number of skyline points increases with the amount of time it takes to discover them. Mainly, because the number of skylines is essential in many real-life applications, various studies have been proposed. However, previous researches have used the k-parameter methods such as top-k and k-means to discover representative skyline points (RSPs) from entire skyline point set, resulting in high query response time and reduced representativeness due to k dependency. To solve this problem, we propose a new Connected Component Clustering based Representative Skyline Query (3CRS) that can discover RSP quickly even in high-dimensional data through connected component clustering. 3CRS performs fast discovery and clustering of skylines through hash indexes and connected components and selects RSPs from each cluster. This paper proves the superiority of the proposed method by comparing it with representative skyline queries using k-means and DBSCAN with the real-world dataset.

Intelligent LoRa-Based Positioning System

  • Chen, Jiann-Liang;Chen, Hsin-Yun;Ma, Yi-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2961-2975
    • /
    • 2022
  • The Location-Based Service (LBS) is one of the most well-known services on the Internet. Positioning is the primary association with LBS services. This study proposes an intelligent LoRa-based positioning system, called AI@LBS, to provide accurate location data. The fingerprint mechanism with the clustering algorithm in unsupervised learning filters out signal noise and improves computing stability and accuracy. In this study, data noise is filtered using the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm, increasing the positioning accuracy from 95.37% to 97.38%. The problem of data imbalance is addressed using the SMOTE (Synthetic Minority Over-sampling Technique) technique, increasing the positioning accuracy from 97.38% to 99.17%. A field test in the NTUST campus (www.ntust.edu.tw) revealed that AI@LBS system can reduce average distance error to 0.48m.

Robust Lane Detection Algorithm for Autonomous Trucks in Container Terminal

  • Ngo Quang Vinh;Sam-Sang You;Le Ngoc Bao Long;Hwan-Seong Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.252-253
    • /
    • 2023
  • Container terminal automation might offer many potential benefits, such as increased productivity, reduced cost, and improved safety. Autonomous trucks can lead to more efficient container transport. A robust lane detection method is proposed using score-based generative modeling through stochastic differential equations for image-to-image translation. Image processing techniques are combined with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Genetic Algorithm (GA) to ensure lane positioning robustness. The proposed method is validated by a dataset collected from the port terminals under different environmental conditions and tested the robustness of the lane detection method with stochastic noise.

  • PDF

An Improved Automated Spectral Clustering Algorithm

  • Xiaodan Lv
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.185-199
    • /
    • 2024
  • In this paper, an improved automated spectral clustering (IASC) algorithm is proposed to address the limitations of the traditional spectral clustering (TSC) algorithm, particularly its inability to automatically determine the number of clusters. Firstly, a cluster number evaluation factor based on the optimal clustering principle is proposed. By iterating through different k values, the value corresponding to the largest evaluation factor was selected as the first-rank number of clusters. Secondly, the IASC algorithm adopts a density-sensitive distance to measure the similarity between the sample points. This rendered a high similarity to the data distributed in the same high-density area. Thirdly, to improve clustering accuracy, the IASC algorithm uses the cosine angle classification method instead of K-means to classify the eigenvectors. Six algorithms-K-means, fuzzy C-means, TSC, EIGENGAP, DBSCAN, and density peak-were compared with the proposed algorithm on six datasets. The results show that the IASC algorithm not only automatically determines the number of clusters but also obtains better clustering accuracy on both synthetic and UCI datasets.