Robust Lane Detection Algorithm for Autonomous Trucks in Container Terminal

Ngo Quang Vinh* · Sam-Sang You** · Le Ngoc Bao Long*** · † Hwan-Seong Kim

*M.S. Course, Graduate school of Korea Maritime and Ocean University, Busan, 49112, KOREA **Professor, Division of Mechanical Engineering, Korea Maritime and Ocean University, Busan, 49112, KOREA

***PhD. Course, Graduate school of Korea Maritime and Ocean University, Busan, 49112, KOREA * Professor, Dept. of Logistics, Korea Maritime and Ocean University, Busan, 49112, KOREA

Abstract : Container terminal automation might offer many potential benefits, such as increased productivity, reduced cost, and improved safety. Autonomous trucks can lead to more efficient container transport. A robust lane detection method is proposed using score-based generative modeling through stochastic differential equations for image-to-image translation. Image processing techniques are combined with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Genetic Algorithm (GA) to ensure lane positioning robustness. The proposed method is validated by a dataset collected from the port terminals under different environmental conditions and tested the robustness of the lane detection method with stochastic noise.

Key words : Container Terminal; Lane Detection; Image Processing; Stochastic Differential Equation, Deep Learning

- In this field, a whole automated container transport system via a roll-on/roll-off method was
 proposed for connecting a seaport and a hinterland port
- In addition, all possible options for employing advanced technology include driver assistance, remote control, and autonomous driving in automated terminals
- Through real-time lane detection and tracking system, the position and azimuth deviation of an ACT are generated to provide inputs to its control system

curve to the lane markings using techniques such as least squares curve fitting or Random Sample Consensus (RANSAC)	Being sensitive to noise and may not work well in complex scenarios.
A lightweight UNet is trained to classify pixels or regions in an image as belonging to a lane or not	The method depends on benchmark datasets cause it can not easily apply in the terminal port scenario.
A lane detection and tracking method for Rubber-tired Gantry Cranes (RTG)	Instead of using a deep learning model, the approach employed traditional image process techniques for RTG autonomous driving in a container yard.
n method can deal with complic ative model utilizing image proc	ated environmental conditions assing, machine learning, and
	core to the later making using berhapsa such as least guives curve time; or Random Sample Comence (RANSAC). A Signivegit their is tablenet to classify pixels or regions in an image as belonging to a later or not A later datection and tracking method for Rubber-bired Carrey Come (NTG) in method can deal with complice titive model utilizing image proce

4 ④ [한국해양대학교

A popular approach is to fit a pr

3

* Corresponding Author : 종신회원, kimhs@kmou.ac.kr 051)410-4334

D4-2

- The lane positioning accuracy can be improved by utilizing a color-based comparison principle and extracting a Region of Interest (RoI) in the image that focuses on the lane area while disregarding areas outside the lane
- A skiling value of the image method is then employed to enhance the accuracy of straight-line detection. Afterward, noise removing models, such as DBSCAN and GA, are utilized to determine lane positioning. Figure 5 shows the flowchart

10

2023년 한국형해항안해외 춘계학술대회

컨테이너 터미널의 자선 인식 알고리용 연구