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Abstract 

In this paper, an improved automated spectral clustering (IASC) algorithm is proposed to address the limitations 

of the traditional spectral clustering (TSC) algorithm, particularly its inability to automatically determine the 

number of clusters. Firstly, a cluster number evaluation factor based on the optimal clustering principle is 

proposed. By iterating through different k values, the value corresponding to the largest evaluation factor was 

selected as the first-rank number of clusters. Secondly, the IASC algorithm adopts a density-sensitive distance 

to measure the similarity between the sample points. This rendered a high similarity to the data distributed in 

the same high-density area. Thirdly, to improve clustering accuracy, the IASC algorithm uses the cosine angle 

classification method instead of K-means to classify the eigenvectors. Six algorithms—K-means, fuzzy C-

means, TSC, EIGENGAP, DBSCAN, and density peak—were compared with the proposed algorithm on six 

datasets. The results show that the IASC algorithm not only automatically determines the number of clusters 

but also obtains better clustering accuracy on both synthetic and UCI datasets. 
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1. Introduction 

Clustering analysis is a highly effective method for mining deep information and correlating data. The 

goal of clustering is to divide a dataset into several clusters. The optimal criterion for clustering is 

characterized by high intraclass similarity and low interclass similarity [1]. Recently, cluster analysis has 

been widely used for image processing [2,3], biological information [4–6], and pattern recognition [7–

9], among others. 

The K-means [10] algorithm randomly initializes the cluster center, calculates the distance from each 

sample point to each center, and divides the category of sample points according to the distance from the 

center. Subsequently, the K-means algorithm calculates new center points for each cluster and circulates 

this process until the positions of all the center points no longer change. The concept of K-means 

algorithm is straightforward; however, it has notable disadvantages, including sensitivity to initial centers 

and outliers, as well as the lack of automatic determination of the number of clusters. To enhance the 

reliability of the K-means algorithm, researchers introduced the flexible partition idea of fuzzy 

mathematics into cluster analysis, leading to the development of fuzzy C-means (FCM) algorithm. FCM 

algorithm [10] uses a membership function to classify different sample points. It minimizes the cost by 

repeatedly calculating the membership function and clustering center to obtain the clustering result. 

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Manuscript received November 22, 2022; first revision February 14, 2023; accepted March 11, 2023. 
*Corresponding Author: Xiaodan Lv (20210051@huat.edu.cn) 

Institute of Automotive Engineers, Hubei University of Automotive Technology, Shiyan, China (20210051@huat.edu.cn) 

J Inf Process Syst, Vol.20, No.2, pp.185~199, April 2024 ISSN 1976-913X (Print) 
https://doi.org/10.3745/JIPS.04.0307 ISSN 2092-805X (Electronic) 



An Improved Automated Spectral Clustering Algorithm 

 

186 | J Inf Process Syst, Vol.20, No.2, pp.185~199, April 2024 

Compared with the K-means algorithm, the FCM algorithm has better reliability; however, the clustering 

amount cannot be automatically determined. Ester et al. [11] presented a DBSCAN algorithm to discover 

clusters with random shapes. As a classical density-based clustering algorithm, DBSCAN calculates the 

tightness of the samples to recognize the categories of sample points. In the sample space, particles with 

a high aggregation density are divided into one cluster. This algorithm avoids the requirement of inputting 

a specific number of clusters and efficiently handles arbitrarily shaped datasets. However, DBSCAN is 

sensitive to its parameters and requires manual adjustment of the eps and MinPTs values to achieve better 

cluster results. To address this problem, Rodriguez and Laio [12] proposed a density peaks (DP) 

algorithm. The DP algorithm assumes that cluster centers exhibit a higher local density than neighbors 

and are relatively far from any other point with a higher local density. DP algorithm calculates each data 

point’s local density ρi and its distance δi from other higher density points. Then, points with a high δi 

value and relatively high ρi value are manually selected as clustering centers based on the decision graph. 

Finally, the DP algorithm assigns the remaining points to the same categories as its nearest neighbor, 

which has a higher density. The result of the DP algorithm is robust with a parameter cutoff distance dc. 

Despite the significant improvement over DBSCAN, the clustering performance exhibited by the DP 

algorithm on non-convex datasets is not optimal. To enhance the performance of the algorithm on non-

convex datasets, researchers have proposed a traditional spectral clustering (TSC) algorithm [13]. The 

TSC builds an undirected graph through the connections between sample points. In this graph, the nodes 

represent each data point, and the sides represent the similarity between the data points. The TSC then 

cuts this graph to minimize the weight of the cutting edge. At this point, the clustering problem is 

transformed into a graph-segmentation problem. The TSC algorithm improves the processing ability of 

high-dimensional data and performs well on non-convex datasets. Although the TSC is a competitive 

clustering algorithm, the clustering number cannot be determined automatically. 

In order to make TSC algorithm can automatically determine the number of clusters, this paper presents 

an improved automated spectral clustering (IASC) algorithm. In this study, the clustering number 

evaluation factor was defined based on the clustering principle of "higher intra-class similarity and lower 

inter-class similarity." By iterating with different k values, the IASC algorithm selects the k value 

corresponding to the largest evaluation factor as the final number of clusters. In addition, to ensure that 

data distributed in the same-density region share higher similarity, IASC uses density-sensitive distance 

to calculate similarity. Simultaneously, to improve clustering accuracy, the IASC algorithm classifies 

feature vectors using the cosine angle method. After conducting the comparative experiment, the results 

reveal that the IASC algorithm obtains the cluster number automatically based on better clustering 

accuracy, which is an effective improvement on TSC. 

 

 

2. Principle of TSC 

The TSC algorithm is derived from spectrum division theory [14,15]. From a graph theory perspective, 

clustering is equivalent to the optimal partitioning of an undirected graph. All samples in the dataset are 

considered as node set V, and the connections (or similarities) between samples are considered as the 

edge set E of the undirected graph. Together, they constitute an undirected graph G = (V, E). The task of 

spectral clustering is to determine an optimal partitioning method for the graph such that the resulting 

subgraphs exhibit the following characteristics: the total edge weight between different subgraphs is 

minimized, while the total edge weight between nodes within the same subgraph is maximized. Thus, the 
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objective function can be defined as: 
 

RatioCut���,�� … … .��� =
1

2
�
�

���

���� ,���
|��| . (1) 

 

In Eq. (1), ��,�� … … .�� represents k clusters after partitioning the dataset, ���� ,��� represents the 

similarity between cluster �� and the other clusters, while |��| represents the number of nodes in cluster 

��. Therefore, the problem of spectrum clustering is transformed into the problem of determining the 

minimum value of Eq. (1). 

In general, it is difficult to find the minimum value of Eq. (1) directly. A better solution is to consider 

the continuous relaxation form of the problem and convert the problem of minimizing the objective 

function into a spectral decomposition problem of a Laplace matrix [10]. Firstly, we constructed an 

adjacency matrix W in graph G. ��� in the matrix represents the similarity between the sample points 
� 
and 
�, which is defined as follows: 
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The TSC algorithm then builds a Laplacian matrix, as defined in Eq. (3). In Eq. (3), � is the degree 

matrix of �. 
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 �|�||�‾| = |�|�|�‾||�|− |�‾|�|�||�‾| = 0. (7) 

 

In Eq. (5), |�| represents the number of nodes in graph G. In Eq. (7), E represents the unit matrix. Eq. 

(5) shows that minimizing the objective function RatioCut is equivalent to the minimization of �

�, 

while simultaneously satisfying the constraint conditions in Eqs. (6) and (7). Assuming that the 

eigenvalue of the Laplace matrix L is denoted by �, and that the eigenvector is �, a new equation is 

obtained: 
 

�

� = �
�� = ��
� = ��. (8) 

 

In Eq. (8), n is a constant representing the number of samples in the dataset. Minimization of the 

objective function RatioCut was used to acquire the minimum eigenvalue of the Laplace matrix. In 

addition, the Laplace matrix L is a symmetric semidefinite matrix, and all eigenvalues are not less than 

zero. 
 


∗� = (� − �) ∗ � = 0∗�. (9) 

 

According to Eq. (9), the lowest eigenvalue of the Laplace matrix is 0. However, the associated 

eigenvector is E, which does not satisfy the constraint conditions as shown in Eq. (7). According to the 

Rayleigh–Ritz theory, it is possible to obtain the second-smallest eigenvalue and its corresponding 

eigenvector. Furthermore, we obtained the first k smallest eigenvalues and their corresponding 

eigenvectors of L. These k eigenvectors were then arranged to form an N × K matrix. K-means clustering 

was performed on the row vectors of this matrix to obtain k clusters, and the final clustering results were 

mapped back to the original space. 

The workflow of TSC is as follows [13,15–17]: 

Step 1: Construct a matrix to represent the relationship between the sample points in the dataset, the 

similarity matrix W. ��� represents the similarity between 
� and 
�, calculated using Eq. (2). 

Step 2: Obtain the degree matrix D of the similarity matrix W and calculate the Laplace matrix using 

L = D – W. 

Step 3: Arrange the eigenvalues of L from smallest to largest and obtain the first k eigenvalues and 

their corresponding eigenvectors. 

Step 4: Combine these k eigenvectors into an N × k matrix, where each row represents a k-dimensional 

vector. After performing K-means clustering, the classes assigned to each row in the clustering 

result represent the categories of each sample in the original datasets. 

 

 

3. IASC Algorithm 

The TSC algorithm is primarily focused on the size of the dataset rather than the dimensions of the 

data. This feature enhances its ability to process high-dimensional data effectively. Additionally, as a 
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non-central clustering algorithm, it is capable of producing optimal clustering results for non-convex 

datasets. However, the TSC algorithm exhibits three notable disadvantages. Firstly, it requires the manual 

input of the number of clusters. Predicting the appropriate number of clusters can be challenging in 

practical scenarios, presenting an obstacle to the widespread application and promotion of TSC [18]. 

Therefore, it is necessary to design an automated spectral clustering algorithm. Secondly, as a highly 

competitive algorithm, its success is inseparable from that of the similarity measure method. Although 

the algorithm uses the Euclidean distance to measure the similarity between samples, this approach is 

sensitive to scale parameters and fails to account for the global consistency characteristics of the data 

distribution. After spectral decomposition and K-means clustering, the error caused by the lack of features 

is amplified, affecting the clustering results. Thirdly, the TSC algorithm uses K-means clustering to 

classify eigenvectors, which may not perform optimally with high-dimensional vectors. 

Therefore, it is imperative to achieve automatic clustering and enhance clustering accuracy by 

improving the similarity measurement method and optimizing K-means clustering techniques. 

 

3.1 Cluster Number Evaluation Factor 

Numerous classical clustering algorithms, such as K-means, FCM, and TSC, require manual specifi-

cation of the value of k. However, it is impossible to determine the number of clusters, k, through prior 

knowledge, which poses an obstacle to the advancement and application of clustering. Therefore, the 

automatic determination of clustering numbers has become a popular research topic in recent years. 

Kong et al. [18] ranked all the eigenvalues of the Laplace matrix from smallest to largest and then 

utilized the eigengap to describe the difference between adjacent eigenvalues. They automatically 

obtained clustering numbers by determining the location of the largest eigengap value. However, this 

method is difficult to understand and requires abundant calculations, resulting in poor efficiency when 

the data dimensions increase [19]. Porter and Canagarajah [20] found that the objective function decreases 

monotonically with the number of clusters. Initially, the objective function decreases rapidly as the value 

of the independent variable (number of clusters) increases. After reaching a certain number of clusters, 

the rate of decline slowed down. Therefore, the k value corresponding to the critical point is calculated 

as the best clustering number. However, this method only considers compactness within a class and does 

not consider dispersion between classes [21]. Chen et al. [22] constructed a cumulative adjacency matrix 

by integrating multiple FCM clustering results and segmenting the cumulative adjacency matrix using an 

iterative method to output the final results. 

By combining the advantages of the above algorithms, we designed a cluster number evaluation factor 

and introduced it into a spectral clustering algorithm to automatically determine the number of clusters. 

The evaluation factor comprehensively considers the compactness within a class and dispersion between 

classes. A larger evaluation factor indicates a more compact intraclass and a distinct interclass. Simul-

taneously, this study integrates the results of multiple spectral clusters. By iterating through different 

cluster numbers to obtain different evaluation factor values, the IASC algorithm considers the cluster 

number corresponding to the maximum evaluation factor value as the optimal cluster number. The 

evaluation factor V is calculated as follows: 
 

� =
∑
�,
�∈�	

���

∑ ���
	
�,��� − 2∑
�,
�∈�	

���

. (10) 



An Improved Automated Spectral Clustering Algorithm 

 

190 | J Inf Process Syst, Vol.20, No.2, pp.185~199, April 2024 

In Eq. (10), ��� represents the element value in the ith row and jth column of the similarity matrix W, 

which denotes the similarity between ��  and �� . Here, �� , �� ∈ �� , indicating that data ��  and data �� 

belong to the same class. The numerator V represents the sum of the similarities between all data points 

belonging to one class, while the denominator V represents the sum of the similarities between data points 

belonging to different classes. The evaluation factor V effectively evaluates the tightness intraclass and 

dispersion interclass. The larger the value of V, the more compact the intraclass data and the more distinct 

the interclass data. 

 

3.2 Density Sensitive Distance Similarity 

For complex problems, adapting to the characteristics of the spatial distribution of data is almost 

impossible. Typically, sample points belonging to the same category are often distributed within high-

density areas, while those of different categories may reside in low-density regions. Unfortunately, the 

similarity calculated using Euclidean distance does not meet this requirement. 

In such cases, it is necessary to design a new similarity measurement method that elongates paths 

passing through low-density regions while shortening others. To address this challenge, Wang et al. [23] 

designed a density-adjustable line segment. 

 

��� � 	���� 
��,��
 
 1. (11) 

 

In Eq. (11), �
����� , ��� represents the Euclidean distance between data points ��  and �� , and the 

stretching factor ρ is greater than 1. 

In Fig. 1 [11], based on the definition of a density-adjustable line segment, we obtain 

When ρ = 2, L(a, f)+L(f, e)+L(e, d)+L(d, c)+L(c, b) = 1+1.8+3+1+1.8 = 8.6 < L(a, b) = 31; 

When ρ = 3, L(a, f)+L(f, e)+L(e, d)+L(d, c)+L(c, b) = 2+4.2+8+2+4.2 = 20.4 < L(a, b) = 241. 

 

 

Fig. 1. Illustration of density-adjustable line segments. The numbers in parentheses are the distances 

between two adjacent points when ρ is equal to 2 and 3. 

 

As shown in Fig. 1, the distance calculated using the density-sensitive line segment makes the line 

segment passing through the high-density region shorter than that passing through the low-density region. 

For example, L(a, b) > L(a, f)+L(f, e)+L(e, d)+L(d, c)+L(c, b). This new distance measurement method 

reflects the global consistency of the spatial distribution of data and lays the foundation for similarity 

measurements between data. 

Based on the density-adjustable line segment, we designed a method to calculate the similarity between 

sample points. The density-sensitive distance is calculated as follows: 
 

��� � min
�∈���

 �
���

���

���� , �����. (12) 
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In Eq. (12), ��� stands for the set of connection paths between points 
� and 
�, L represents the density 

adjustable line segment’s size, and ��� represents the shortest path between 
� and 
�. Furthermore, the 

similarity matrix W is defined based on the density-sensitive distance, and the calculation formula for 

��� is as follows: 

 

��� =
1

���

. (13) 

 

In Eq. (13), ��� is the density-sensitive distance. This similarity calculation method reflects the reverse 

correlation between density-sensitive distance and similarity. That is, the data in the same-density area 

had higher similarity, and the data in different-density areas had lower similarity. It considers the global 

consistency of the spatial distribution of data. Compared to the Gaussian kernel function proposed by 

Chapelle and Zien [24], this similarity calculation method reduces the number of parameters. Compared 

with the method proposed by Yang et al. [25], this similarity calculation method simplifies the calculation 

process and improves the calculation efficiency, which is evident when the amount of data is large. 

 

3.3 Cosine Angle Classification Method 

K-means was used to classify the eigenvectors according to the algorithm flow of the TSC. The core 

principle of the K-means algorithm is to classify vectors according to their Euclidean distance, which 

means that two vectors with shorter distances are more similar and vice versa. The Euclidean distance 

was used to measure the shortest distance between the two vectors. It is widely used owing to its 

simplicity. However, the Euclidean distance is difficult to normalize and does not perform well for high-

dimensional vectors. The cosine angle value is a normalized quantity that is more suitable for measuring 

the similarity between higher-dimensional vectors (Fig. 2). 

 

 
(a) (b) 

Fig. 2. (a) Euclidean distance and (b) cosine angle. 

 

Because most eigenvectors are higher-dimensional vectors, based on this consideration, we propose a 

cosine-angle classification method instead of K-means. The cosine of the vector angle is calculated as 

follows: 
 

cos��� =

 ∙ �
|
 ∥ �|. (14) 
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In Eq. (14), � represents the angle between the vector x and the vector y. |
| represents the magnitude 

of the vector x, and |�| represents the magnitude of the vector y. According to the definition of the cosine 

function, the smaller � is, the bigger cos��� is, indicating that x is more similar to y. Thus, IASC uses 

the cosine angle instead of the K-means algorithm. 

 

3.4 Main Processes of the IASC Algorithm 

This paper proposes an IASC algorithm based on the TSC algorithm. In IASC, the cluster number 

evaluation factor is utilized to automatically determine the cluster number, the density-sensitive distance 

is used to measure the similarity between data, and the cosine angle classification method is applied for 

classifying eigenvectors instead of K-means. The IASC algorithm consists of two stages: Stage 1 involves 

the selection of cluster numbers, while Stage 2 involves obtaining the final clusters. 

 

Stage 1. Selection of cluster numbers 

Input:      Dataset X 

Output:   Cluster numbers k 

1: for k = 2 to K do  

2: Calculate Lij based on Equation (11) and acquire matrix L. 

3: Calculate Dij based on Equation (12) and acquire matrix D. 

4: Calculate Wij based on Equation (13) and acquire the similarity matrix W. 

5: Calculate degree matrix D1 of W based on D1= diag(sum(W, 2)), and then obtain the Laplace 

matrix L based on L= D1-W. 

6: Using [V,~] = eigs(L, k,’ SM’) to obtain eigenvectors related to the smallest k eigenvalues of L. 

7: Each row of matrix V is clustered using the K-means algorithm. In the clustering results, the 

category of each row represents the category of each sample in the original dataset. 

8: Calculate Vk based on Equation (10). 

9: end 

10: Return k value corresponding to the maximum evaluation factor Vk. 

 

The input of Stage 1 includes dataset X and the maximum number of clusters, K. Here, line 1 

specifies the range of k, that is, [2, K], and iterates the integer values in this range. Subsequently, 

operations from lines 2–8 are performed repetitively. Line 2 uses Eq. (11) to calculate the length of 

the density-sensitive line segments between any data point to acquire matrix L. Line 3 uses Eq. (12) 

to calculate the shortest path between any two points and form matrix D based on the Floyd algorithm 

[26]. Line 4 uses Eq. (13) to calculate the similarity ���  between any two points and obtain the 

similarity matrix W. Line 5 calculates the degree matrix and Laplace matrix based on �1 =

����(�����, 2�) and 
 = �1 − �. Line 6 arranges the eigenvalues of L from small to large to obtain 

the first k eigenvalues and the corresponding eigenvectors. Line 7 arranges these k eigenvectors to 

constitute an N × k matrix. After applying K-means to each row of the matrix, the category of each 

row was the category of each sample in the original dataset. Line 8 calculates the evaluation factor 

according to Eq. (10) and adds it to array V. Line 10 returns the k value corresponding to the maximum 

evaluation factor value �� as cluster numbers. 
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Stage 2. Obtain the final clusters 

Input:      Dataset X, Cluster numbers k 

Output: Final Clusters C, Where Ck represents k-th cluster 

1: Calculate Lij between Xi and Xj based on Equation (11) and acquire matrix L. 

2: Calculate Dij based on Equation (12) and acquire matrix D. 

3: Calculate Wij based on Equation (13) and acquire the similarity matrix W. 

4: Calculate degree matrix D1 of W based on D1= diag(sum(W, 2)), and then obtain the Laplace 

matrix L based on L = D1-W. 

5: Using [V,~] = eigs(L, k,’SM’) to obtain eigenvectors related to the smallest k eigenvalues of L. 

6: Each row of matrix V is clustered using the cosine angle classification method. In the clustering 

results, the category of each row is the category of each sample in the original dataset X. 

7: Return the final clusters C.  

 

The input of Stage 2 includes the dataset X and cluster number k. Line 1 uses Eq. (11) to calculate 

the length of the density-sensitive line segments between any data point to acquire matrix L. Line 2 

uses Eq. (12) to calculate the shortest path between any two points and form matrix D based on the 

Floyd algorithm [26]. Line 3 uses Eq. (13) to calculate the similarity ��� between any two points and 

obtain the similarity matrix W. Line 4 calculates degree matrix D1 and Laplace matrix L based on 

�1 = ����(�����, 2�) and 
 = �1 − �. Line 5 arranges eigenvalues of L from small to large and 

obtains the first k eigenvalues and corresponding eigenvectors. Line 6 arranges these k eigenvectors 

to constitute an N × k matrix: After applying the cosine-angle classification method to each row of the 

matrix, the category of each row was the category of each sample in the original dataset. Line 7 returns 

to the final cluster C. 

 

 

4. Experimental Results 

To evaluate the performance of the IASC algorithm, we verified the verification process on six datasets, 

including three synthetic datasets and three UCI datasets, which are real-world datasets from the Uni-

versity of California, Irvine [27]. The test datasets are presented in Table 1. From Table 1, we extracted 

the names, attributes, clusters, instances, and data sources. The experiment comprised two parts. Part 1 

studies the determination of cluster numbers, and Part 2 studies the clustering accuracy of the different 

algorithms. 

For comparison, six additional clustering algorithms were implemented to validate the IASC algorithm. 

These algorithms include K-means [1], FCM [1], TSC [16], EIGENGAP [19], DBSCAN [11], and DP 

 

Table 1. Introduction to the datasets 

Dataset  Attributes Clusters Instances Data source 

Lines 2 4 400 Synthetic 

Luoxuan 2 2 252 Synthetic 

TwoMoon 2 2 600 Synthetic 

BreastCancer 10 2 683 UCI 

Transfusion 4 2 748 UCI 

Ecoli 7 2 272 UCI 
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[12]. To ensure the principle of one variable, the TSC and IASC parameters were identical. The test 

environment [28] of this experiment is as follows: central processing unit (CPU) is Intel Core I5-6200U 

CPU @2.30 GHz 2.4 kHz; memory space is 4 GB; programming environment is MATLAB; programming 

language is m. 

 

Table 2. Experimental results of the selection of the cluster amount 

Dataset  K-means FCM TSC EIGENGAP DBSCAN DP IASC 

Lines - - - 5 4 4 2 

Luoxuan - - - 3 1 2 2 

TwoMoon - - - 2 2 3 2 

BreastCancer - - - - 3 1 2 

Transfusion - - - 4 17 1 2 

Ecoli - - - 5 1 2 2 

The correct numbers of clusters are indicated in bold. 

 

First, we conducted a cluster selection experiment. In Table 2, the dashed symbol indicates that the 

algorithm could not automatically obtain a cluster number. The K-means, FCM, and TSC algorithms 

were incapable of automatically obtaining cluster amounts on all datasets. This is because these 

algorithms must manually input clusters in advance. The EIGENGAP algorithm adopts the concept of 

EIGENGAP. A higher EIGENGAP value indicates a more stable subspace constructed using the selected 

k eigenvectors. The EIGENGAP algorithm considers the position of the first maximum of the intrinsic 

gap sequence as the number of categories. Because the eigenvalues of the matrix may be real or complex, 

the effect of this approach is not ideal. The DBSCAN algorithm calculates the tightness of the samples 

for classification. However, it performs well only on the Lines and TwoMoon datasets because the 

clustering effect of DBSCAN is sensitive to the parameters. The DP algorithm selects points with a high 

δi value and relatively high ρi value as clustering centers manually based on the decision graph. However, 

cluster results are influenced by many factors, such as human experience and data distribution shapes. 

Thus, the DP algorithm only obtained the correct number of clusters for three datasets. However, the 

IASC obtains a reasonable number of clusters on most datasets. The IASC algorithm calculates the 

corresponding evaluation factor value by iterating through varied k values and outputs the k values 

corresponding to the maximum evaluation factor as the final number of clusters to achieve automatic 

clustering. This demonstrated the competitive advantage of the IASC algorithm. 

Second, a clustering accuracy experiment was conducted on six datasets. Because EIGENGAP and 

DBSCAN are sensitive to the parameters, we compared the IASC algorithm with the K-means, FCM, 

TSC, and DP algorithms. Table 1 contains three two-dimensional manual datasets; therefore, we used 

graphics to show the clustering results for ease of reading. The results for the manual datasets are shown 

in Figs. 3–5. In addition, there are three UCI datasets with high-dimensional attributes in Table 1, hence 

the results of the UCI datasets are displayed in Table 3. 

 

Table 3. Clustering accuracy on UCI datasets 

Dataset  K-means FCM TSC DP IASC 

BreastCancer 0.3499 0.6032 0.3441 0.3438 0.6428 

Transfusion 0.2607 0.2928 0.5267 0.2396 0.6845 

Ecoli 0.0221 0.2022 0.1875 0.7045 0.5110 

Bold indicates the algorithm with the highest accuracy in testing each dataset. 
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Fig. 3. Clustering result on the lines dataset (the same color represents the same category). 

 

 

 
Fig. 4. Clustering result on the Luoxuan dataset (the same color represents the same category. In addition, 

black represents noise points in the DP algorithm). 
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The results in Figs. 3–5 indicate that the IASC algorithm achieves a better clustering effect on the three 

non-convex manual datasets, comparing with K-means, FCM, TSC, and DP. The clustering accuracy of 

five algorithms on the UCI datasets is presented in Table 3. The clustering accuracy of IASC is higher 

than those of K-means, FCM, TSC, and DP on most datasets. For example, on the Transfusion dataset, 

the K-means clustering accuracy was 0.2607, FCM’s clustering accuracy was 0.2928, TSC’s clustering 

accuracy was 0.5267, DP’s clustering accuracy was 0.2396, and IASC’s clustering accuracy was 0.6845. 

In K-means, the Euclidean distance is used to estimate the similarities between points and centers. The 

algorithm allows each point to select the category of the center with the smallest distance as its own 

category. The FCM uses the Euclidean distance to build a cost function. When the cost function reaches 

its minimum, the algorithm converges and outputs the results. In the TSC, the Euclidean distance is 

adapted to calculate the similarity of sample points; the closer the Euclidean distance, the higher the 

similarity. The DP algorithm uses the Euclidean distance build decision diagram to select the cluster 

center and assigns sample points to different categories. However, the Euclidean distance only considers 

the local consistency of the spatial distribution of data and does not reflect global consistency; therefore, 

it is difficult for the above algorithm to achieve good clustering accuracy on non-convex datasets. The 

IASC algorithm uses density-sensitive distances to estimate the similarity between sample points, which 

reflects the characteristics of the spatial distribution of the data. This causes the points to be distributed 

in a high-density area with high similarity. In addition, the last step of the IASC algorithm uses the cosine 

angle method instead of K-means to classify the feature vectors because the cosine angle is normalized 

and is more suitable for measuring the similarity between higher-dimensional vectors. 

 

 

 
Fig. 5. Clustering result on the Twomoon dataset (the same color represents the same category. In 

addition, black represents noise points in the DP algorithm). 
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In summary, compared to other algorithms, the IASC algorithm greatly improves clustering accuracy 

through the density-sensitive similarity measure and cosine angle classification method. This is proof of 

the superiority of the IASC algorithm. 

 

 

5. Conclusion 

In this study, we propose the IASC algorithm for data analysis. To achieve automated clustering, the 

IASC algorithm introduces an evaluation factor into the spectral clustering. The corresponding evaluation 

factor value was calculated by iteratively varying the k values, and the k value corresponding to the 

maximum evaluation factor was selected as the final number of clusters. 

The IASC algorithm then uses a density-sensitive distance to measure the similarity between samples, 

which makes the data distributed in a high-density area have a higher similarity. Furthermore, to improve 

cluster accuracy, the IASC algorithm adopts the cosine-angle method to classify the feature vectors. 

It is concluded that the IASC algorithm is capable of automatically obtaining the correct cluster amount 

and demonstrating better cluster accuracy on most datasets than the other algorithms. Therefore, the IASC 

is more effective than the TSC algorithm. 
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