• Title/Summary/Keyword: DBSA

Search Result 30, Processing Time 0.021 seconds

Frictional Behavior and Film Thickness of Some Liquid Crystals in Elastohydrodynamic Lubrication (탄성 유체 윤활에서의 액정의 마찰 특성 및 유막두께)

  • 이희성
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.255-259
    • /
    • 2002
  • The tribological properties of eight different liquid crystals were investigated in a concentrated point contact device and a ball-on-flat contact. For comparison, the same tests were also performed with commercial greases and the corresponding base oils. Under the fully flooded conditions studied, liquid crystals in a concentrated point contact showed lower friction than commercial greases and greater film thickness dependence on rolling speed than grease base oils or greases. Test results also showed that the film thickness and friction were little influenced by the composition of the examined liquid crystals.

Electrical and Physical Evaluation of Processable Conductive PANI/PI Blends

  • Han, Moon-gyu;Im, Seung-soon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.219-222
    • /
    • 1998
  • Polyaniline (PANI) has emerged as one of the most promising conducting polymers of the many types of conducting polymers in that it is soluble and therefore processable in the conducting form, and it is both environmentally and thermally stable together with high conductivity when it is doped by functionalized protonic acids like camphorsulfonic acid (CSA) and dodecylbenzenesulfonic acid (DBSA). (omitted)

  • PDF

Preparation and Characteristics of Polypyrrole/sulfonated Poly(2,6-dimethyl-1,4-phenylene oxide) Composite Electrode (폴리피롤/설폰화 폴리(2,6-디메틸-1,4-페닐렌 옥사이드) 복합전극의 제조 및 특성)

  • Huh, Yang-Il;Jung, Hong-Ryun;Lee, Wan-Jin
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.74-79
    • /
    • 2007
  • Polypyrrole (PPy) was made by an emulsion polymerization using iron (III) chloride ($FeCl_3$) as an initiator and dodecyl benzene sulfuric acid (DBSA) as an emulsifier and dopant. Poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) was sulfonated by chlorosulfonic acid (CSA). The cathode was composed of $PPy^+DBS^-$ complex, conductor powder, and PPO or sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) (SPPO) as a binder or dopant. The charge-discharge performance of $PPy^+DBS^-/SPPO$ cathode was increased as the extent of about 50%, than $PPy^+DBS^-/PPO$. This is because SPPO played a role as a binder as well as a dopant. In addition, sulfonation brings out the increase of miscibility between PPy and SPPO, and the increase of contact area between cathode and electrolyte.

Antistatic Behavior of UV-curable Multilayer Coating Containing Organic and Inorganic Conducting Materials (유·무기 전도성 물질을 함유한 UV 경화형 다층 코팅의 대전방지 특성)

  • Kim, Hwa-Suk;Kim, Hyun-Kyoung;Kim, Yang-Bae;Hong, Jin-Who
    • Journal of Adhesion and Interface
    • /
    • v.3 no.3
    • /
    • pp.22-29
    • /
    • 2002
  • UV curable coating system described here consists of double layers, namely under layer and top laser coatings. The former consists of organic-inorganic conductive materials and the latter consists of multifunctional acrylates. Transparent double layer coatings were prepared on the transparent substrates i.e. PMMA, PC, PET etc. by the wet and wet coating procedure. Their surface resistances and film properties were measured as a function of the top layer thickness and relative humidity. As the thickness of the top layer was less than $10{\mu}m$, the surface resistance in the range of $10^8{\sim}10^{10}{\Omega}/cm^2$ was obtained. The surface properties of the two-layer coating were remarkably improved compared with the single layer coating. The effects of migration of conducting materials on the film properties of multilayer coating were investigated by using contact angle and Fourier transform infrared/attenuated total reflection(FT-IR/ATR). It was found that the migration of dopant(dodecyl benzenesulfonic acid, DBSA) molecules were occurred from film-substrate interface to film-air interface in the organic conductive coating system but not in the inorganic one.

  • PDF

A novel preparation of polyaniline in presence electric and magnetic fields

  • Hosseini, Seyed Hossein;Gohari, S. Jamal
    • Advances in materials Research
    • /
    • v.2 no.4
    • /
    • pp.209-219
    • /
    • 2013
  • We have described primary studies on conductivity and molecular weight of polyaniline separately in the electric and magnetic fields when it is used in a field effect experimental configuration. We report further studies on doped in-situ deposited polyaniline. First we have chemically synthesized polyaniline by ammonium peroxodisulfate in acidic aques and organic solutions at different times. Then we measured mass and conductivity and obtained the best time of polymerizations. In continue, we repeated these reactions separately under different electric and magnetic fields in constant time and measured mass and conductivity. The polyaniline is characterized by gel permeation chromatography (GPC), UV-Visible spectroscopy and electrical conductivity. High molecular weight polyanilines are synthesized under electric field, $M_w$ = 520000-680000 g/mol, with $M_w/M_n$ = 2-2.5. The UV-Visible spectra of polyanilines oxidized by ammonium peroxodisulfate and protonated with dodecylbenzenesulfonic acid (PANi-DBSA), in N-methylpyrolidone (NMP), show a smeared polaron peak shifted into the visible. Electrical conductivity of polyanilines has been studied by four-probe method. The conductivity of the films of emeraldine protonated by DBSA cast from NMP are higher than 500 and 25 S/cm under 10 KV/m of potential) electric field and 0.1 T magnetic field, respectively. It shows an enhanced resistance to ageing too. By the next steps, we carried chemical polymerization at the best electric and magnetic fields at different times. Finally, resulted in finding the best time and amount of the fields. The longer polymerization time and the higher magnetic field can lead to degradation of polyaniline films and decrease conductivity and molecular mass.

Studies on Properties of Polyaniline-Dodecylbenzene Sulfonic Acid Composite Films Synthesized Using Different Oxidants

  • Basavaraja, C.;Pierson, R.;Huh, Do-Sung;Venkataraman, A.;Basavaraja, S.
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.609-615
    • /
    • 2009
  • Two types of nano composite were obtained by in situ chemical method in polyaniline (PANI)/dodecyl-benzenesulfonic acid (DBSA) system depending on the use of either ammonium persulfate (APS) or ferric chloride ($FeCl_3$) as the oxidant. In order to study the difference of the two composites in the surface characteristics, thermal stability, and electric properties, the composite films were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and temperature dependent DC electrical conductivity. The results revealed a large difference in the surface morphology, thermal stability, and the microstructure properties between the two composites, and these differences were considered responsible for the molecular order and conductivity.

Synthesis and Characterization of Soluble Polypyrrole with High Conductivity (높은 전기 전도성을 갖는 가용성 폴리피롤 합성 및 특성)

  • Hong, Jang-Hoo;Jang, Kwan-Sik
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.234-238
    • /
    • 2007
  • Highly conducting Polypyrroles soluble in organic solvents were synthesized using functional doping agents, such as mixed dopants [sodium di(2-ethylhexyl)sulfosuccinate (DEHSNa) Naphthalenesulfonic acid (NSA), DEHSNa Toluenesulfonic acid (TSA), DEHSNa Dodecylbenzensulfonic acid (DBSA)] and mixed oxidants [$(NH_4)_2S_2O_8{\cdot}FeCl_3$, $(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$]. Ppy-DEHS powder using an oxidant, such as $(NH_4)_2S_2O_8$ (10 wt%/vol.) showed higher solubility than the mixed dopant (DEHSNa NSA, 3 wt%/vol.) and mixed oxidant [$(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$, 4 wt%/vol.] in DMF solvent. But Ppy-DEHS free standing film using a mixed dopant, such as DEHSNa NSA (16 S/cm) and a mixed oxidant, such as $(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$ (13 S/cm) cast from DMF solvent showed higher electrical conductivity than $(NH_4)_2S_2O_8$ (2 S/cm). For the Ppy-DEHS films using various condition cast from DMF solvent, three dimensional various range hopping model (3D VRH ; $\{{\sigma}_{dc}(T)={\sigma}_oexp[-(T_o/T)^{1/4}]\}$) provided fit to the results of temperature dependence of electrical conductivity measurement.

The fabrication and sensing characteristics of conducting polymer sensors for Measurement of VOCs (Volatile organic compounds) gas (휘발성 유기 화합물 가스 측정을 위한 전도성 고분자 센서의 제조(製造) 및 감응(感應) 특성(特性))

  • Paik, J.H.;Hwang, H.R.;Roh, J.G.;Huh, J.S.;Lee, D.D.;Lim, J.O.;Byun, H.G.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.125-133
    • /
    • 2001
  • Conducting polymer sensors show high sensitivity when exposed to volatile organic compounds gases at room temperature. The 8 sensor array using by polypyrrole and polyaniline has been fabricated by chemical polymerization for measuring sensing characteristics of VOCs gases. Conducting polymer was polymerized by using distilled pyrrole, aniline as a monomer and ammonium persulfate (APS) as an oxidant and dodecylbenzene sulfonic acid (DBSA) as a dopant. Dedoped film was synthesized by reverse voltage and redoped film was synthesized by using 1-octanesulfonic acid sodium salt as another dopant in electrochemical cell. The sensitivity and reversibility were influenced by doping, dedoping, redoping and thickness for the polypyrrole and polyaniline. We investigated the relation between the structure of conducting polymer and sensitivity of these sensors through the analysis of scanning electron microscope (SEM), scanning probe microscope (SPM) and $\alpha$-step.

  • PDF

Preparation and Properties of Waterborne-Polyurethane Coating Materials Containing Conductive Polyaniline

  • Kim, Han-Do;Kwon, Ji-Yun;Kim, Eun-Young
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.303-310
    • /
    • 2004
  • We have prepared an aqueous dispersion of poly(aniline-dodecyl benzene sulfonic acid complex) (PANI-DC) that has an intrinsic viscosity (〔η〕) near 1.3 dL/g using aniline as a monomer, dodecyl benzene sulfonic acid(DBSA) as a dopant/emulsifier, and ammonium peroxodisulfate(APS) as an oxidant. We found that the electrical conductivity of a PANI-DC pellet was 0.7 S/cm. A waterborne-polyurethane (WBPU) dispersion, obtained from isophorone diisocyanate/polytetramethylene oxide glycol/dimethylol propionic acid/ethylene diamine/triethylene amine, was used as a matrix polymer. We prepared blend films of WBPU/PANI-DC with variable weight ratios (from 99/1 to 66/34) by solution blending/casting and investigated the effects that the PANI-DC content has on the mechanical and dynamic mechanical properties, hardness, electrical conductivity, and antistaticity of these films. The tensile strength, percentage of elongation, and hardness of WBPU/PANI-DC blend films all decreased markedly upon increasing the PANI-DC content. The antistatic half-life time ($\tau$$\sub$$\frac{1}{2}$/) of pure WBPU film was about 110 s, but we found that those of WBPU/ultrasound-treated PANI-DC blend films decreased exponentially from 1.2 s to 0.1 s to almost 0 s upon increasing the PANI-DC content from 1 wt% to 15 wt% to > 15 wt%, respectively.

Fabrication and Characterization of UV-curable Conductive Transparent Film with Polyaniline Nanofibers (폴리아닐린 나노섬유를 이용한 광경화형 전도성 투명필름의 제조 및 특성)

  • Kim, Sung-Hyun;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.531-535
    • /
    • 2012
  • Conductive polyaniline (PANI) nanofibers in UV-curable resin were used for a transparent conductive film. The emeraldine-salt PANI (ES-PANI) nanofibers were prepared by chemical oxidation polymerization of aniline, which could be changed into emeraldine-base PANI by dedoping. EB-PANI nanofibers as a precursor for conductive fillers were thereby transformed into re-dpoed PANI (rES-PANI) by dodecylbenzenesulfonic acid in the UV-curable resin solution. rES-PANI nanofibers have high conductivity and long-term stability in the solution without a defect of nanostructure. The resulting conductive resin solution was proved to be highly stable where no precipitation of rES-PANI fillers was observed over a period of 3 months. The transparent film was spin-casted on a poly(methyl methacrylate) sheet of thickness ca. $5{\mu}m$. A surface resistance of $6.5{\times}10^8{\Omega}/sq$ and transmittance at 550 nm of 91.1% were obtained for the film prepared with a concentration of 1.4 wt% rES-PANI nanofibers in the solution. This transformation process of rES-PANI from ES-PANI by dedoping-redoping can be an alternative method for the preparation of an antistatic protection film with controllable surface resistance and optical transparencies with the PANI concentration in UV-curable solution.