• 제목/요약/키워드: DBS (deep brain stimulation)

검색결과 28건 처리시간 0.026초

Deep Brain Stimulation of the Subthalamic and Pedunculopontine Nucleus in a Patient with Parkinson's Disease

  • Liu, Huan-Guang;Zhang, Kai;Yang, An-Chao;Zhang, Jian-Guo
    • Journal of Korean Neurosurgical Society
    • /
    • 제57권4호
    • /
    • pp.303-306
    • /
    • 2015
  • Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) is a novel therapy developed to treat Parkinson's disease. We report a patient who underwent bilateral DBS of the PPN and subthalamic nucleus (STN). He suffered from freezing of gait (FOG), bradykinesia, rigidity and mild tremors. The patient underwent bilateral DBS of the PPN and STN. We compared the benefits of PPN-DBS and STN-DBS using motor and gait subscores. The PPN-DBS provided modest improvements in the gait disorder and freezing episodes, while the STN-DBS failed to improve the dominant problems. This special case suggests that PPN-DBS may have a unique role in ameliorating the locomotor symptoms and has the potential to provide improvement in FOG.

침습적 뇌자극기술과 법적 규제 - 뇌심부자극술(Deep Brain Stimulation)을 중심으로 - (Invasive Brain Stimulation and Legal Regulation: with a special focus on Deep Brain Stimulation)

  • 최민영
    • 의료법학
    • /
    • 제23권2호
    • /
    • pp.119-139
    • /
    • 2022
  • 뇌에 전기적·자기적 자극을 가하는 뇌자극기술은 신경학적·정신학적 장애에 대해 다양한 범위에 걸쳐 상당한 치료 가능성을 보여준다. 뇌자극기술은 침습 여부에 따라 침습적 기술과 비침습적 기술로 구분되는데, 뇌심부자극술(이하, DBS)은 대표적인 침습적 뇌자극기술에 속한다. 현재 DBS는 식약처 고시인 "의료기기 품목 및 품목별 등급에 관한 규정"에 따라 4등급 의료기기로 분류되어 몇몇 질환에서 안정된 치료법으로 사용되고 있다. 동시에 날로 그 기술이 발전하여 다양한 방향에서 이용방법이 논의되고 있다. 반면, 이와 관련한 법적 규제에 대한 논의는 상대적으로 적은 편이다. 이러한 배경에서 본 글은 DBS의 기술 및 효과와 안전성을 간략하게 소개한 이후, DBS 이용에서 고려할 수 있는 주요한 법적 쟁점을 이용 목적별로, 즉 치료목적, 임상연구 목적, 표준적 치료법이 아니나 다른 치료법이 없는 경우, 향상 목적으로 구분하여 논의하고, 어떠한 목적의 이용이든 DBS 이용에 따른 법적 책임의 문제에서 새로이 공통적으로 부상하고 있는 쟁점-위험·이익평가, 의사의 설명의무, 환자의 동의능력, 기기의 조정, 보험의 보장-을 소개하고 논의한다.

Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson's Disease Model Rats

  • Ryu, Sang Baek;Bae, Eun Kyung;Kim, Jinhyung;Hwang, Yong Sup;Im, Changkyun;Chang, Jin Woo;Shin, Hyung-Cheul;Kim, Kyung Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.299-306
    • /
    • 2013
  • Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been widely used as a treatment for the movement disturbances caused by Parkinson's disease (PD). Despite successful application of DBS, its mechanism of therapeutic effect is not clearly understood. Because PD results from the degeneration of dopamine neurons that affect the basal ganglia (BG) network, investigation of neuronal responses of BG neurons during STN DBS can provide informative insights for the understanding of the mechanism of therapeutic effect. However, it is difficult to observe neuronal activity during DBS because of large stimulation artifacts. Here, we report the observation of neuronal activities of the globus pallidus (GP) in normal and PD model rats during electrical stimulation of the STN. A custom artifact removal technique was devised to enable monitoring of neural activity during stimulation. We investigated how GP neurons responded to STN stimulation at various stimulation frequencies (10, 50, 90 and 130 Hz). It was observed that activities of GP neurons were modulated by stimulation frequency of the STN and significantly inhibited by high frequency stimulation above 50 Hz. These findings suggest that GP neuronal activity is effectively modulated by STN stimulation and strongly dependent on the frequency of stimulation.

The Neuromodulation of Neuropathic Pain by Measuring Pain Response Rate and Pain Response Duration in Animal

  • Kim, Jinhyung;Lee, Sung Eun;Shin, Jaewoo;Jung, Hyun Ho;Kim, Sung June;Chang, Jin Woo
    • Journal of Korean Neurosurgical Society
    • /
    • 제57권1호
    • /
    • pp.6-11
    • /
    • 2015
  • Objective : Neuropathic pain causes patients feel indescribable pain. Deep Brain Stimulation (DBS) is one of the treatment methods in neuropathic pain but the action mechanism is still unclear. To study the effect and mechanism of analgesic effects from DBS in neuropathic pain and to enhance the analgesic effect of DBS, we stimulated the ventral posterolateral nucleus (VPL) in rats. Methods : To observe the effect from VPL stimulation, we established 3 groups : normal group (Normal group), neuropathic pain group (Pain group) and neuropathic pain+DBS group (DBS group). Rats in DBS group subjected to electrical stimulation and the target is VPL. Results : We observed the behavioral changes by DBS in VPL (VPL-DBS) on neuropathic pain rats. In our study, the pain score which is by conventional test method was effectively decreased. In specific, the time of showing withdrawal response from painful stimulation which is not used measuring method in our animal model was also decreased by DBS. Conclusion : The VPL is an effective target on pain modulation. Specifically we could demonstrate changes of pain response duration which is not used, and it was also significantly meaningful. We thought that this study would be helpful in understanding the relation between VPL-DBS and neuropathic pain.

Deep Brain Stimulation of the Globus Pallidus in a 7-Year-Old Girl with DYT1 Generalized Dystonia

  • Jin, Seon Tak;Lee, Myung Ki;Ghang, Ju Young;Jeon, Seong Man
    • Journal of Korean Neurosurgical Society
    • /
    • 제52권3호
    • /
    • pp.261-263
    • /
    • 2012
  • The experience of pediatric deep brain stimulation (DBS) of the globus pallidus internus (GPi) in the treatment of early-onset DYT1 generalized dystonia is still limited. Here, we report the surgical experience of bilateral GPi-DBS under general anesthesia by using microelectrode recording in a 7-year-old girl with early-onset DYT1 generalized dystonia. Excellent improvement of her dystonia without neurological complications was achieved. This case report demonstrates that GPi-DBS is an effective and safe method for the treatment of medically refractory early-onset DYT1 generalized dystonia in children.

파킨슨성 완서증의 손가락 마주치기 속도와 크기에 대한 약물과 뇌심부자극의 효과 (Effects of Medication and Deep Brain Stimulation on the Finger-tapping Speed and Amplitude of Parkinsonian Bradykinesia)

  • 김지원;권유리;박상훈;엄광문;고성범;장지완;이혜미
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.47-52
    • /
    • 2012
  • The purpose of this study is to investigate whether medication and deep brain stimulation (DBS) have differential effects on the speed and amplitude of bradykinesia in patients with Parkinson's disease (PD). Five PD patients with implanted DBS electrodes (age: $60.6{\pm}7.4yrs$, H&Y stage: $3.1{\pm}0.2$) participated in this study. FT (finger tapping) movement was measured using a gyrosensor system in four treatment conditions: Med (Medication)-off/DBS-off, Med-off/DBS-on, Med-on/DBS-off and Med-on/DBS-on. Quantitative measures representing average speed and amplitude of FT movement included root-mean-squared (RMS) angular velocity and RMS angle. One-way repeated measures ANOVA showed that RMS angular velocity of Med-on/DBS-on was significantly greater than those of Med-off/DBS-off and Med-off/DBS-on (p < 0.01) whereas RMS angle was not different among conditions (p = 0.06). Two way repeated measures ANOVA showed that only medication improved RMS angular velocity (p < 0.01), whereas both medication and DBS had no significant effect on RMS angle (p > 0.02). Effect size of RMS angular velocity was greater than that of RMS angle in both medication and DBS. This suggests that medication and DBS have differential effects on FT bradykinesia and velocity and amplitude impairments may be associated with different functional aspects in PD.

Factors Related to Outcomes of Subthalamic Deep Brain Stimulation in Parkinson's Disease

  • Kim, Hae Yu;Chang, Won Seok;Kang, Dong Wan;Sohn, Young Ho;Lee, Myung Sik;Chang, Jin Woo
    • Journal of Korean Neurosurgical Society
    • /
    • 제54권2호
    • /
    • pp.118-124
    • /
    • 2013
  • Objective : Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective treatment of choice for patients with advanced idiopathic Parkinson's disease (PD) who have motor complication with medication. The objectives of this study are to analyze long-term follow-up data of STN DBS cases and to identify the factors related to outcomes. Methods : Fifty-two PD patients who underwent STN DBS were followed-up for more than 3 years. The Unified Parkinson's Disease Rating Scale (UPDRS) and other clinical profiles were assessed preoperatively and during follow-up. A linear regression model was used to analyze whether factors predict the results of STN DBS. We divided the study individuals into subgroups according to several factors and compared subgroups. Results : Preoperative activity of daily living (ADL) and the magnitude of preoperative levodopa response were shown to predict the improvement in UPDRS part II without medication, and preoperative ADL and levodopa equivalent dose (LED) were shown to predict the improvement in UPDRS part II with medication. In UPDRS part III with medication, the magnitude of preoperative levodopa response was a predicting factor. Conclusion : The intensity of preoperative levodopa response was a strong factor for motor outcome. And preoperative ADL and LED were strong factors for ADL improvement. More vigorous studies should be conducted to elucidate how levodopa-induced motor complications are ameliorated after STN DBS.

난치성 뇌전증 치료를 위한 심부뇌자극술: 임상적 관점에서 (Deep Brain Stimulation for Controlling Refractory Epilepsy: a Clinical Perspective)

  • 김우준;손영민
    • Annals of Clinical Neurophysiology
    • /
    • 제14권2호
    • /
    • pp.59-63
    • /
    • 2012
  • Epilepsy has continued to provide challenges to epileptologists, as a significant proportion of patients continue to suffer from seizures despite medical and surgical treatments. Deep brain stimulation (DBS) has emerged as a new therapeutic modality that has the potential to improve quality of life and occasionally be curative for patients with medically refractory epilepsy who are not surgical candidates. Several groups have used DBS in drug-resistant epilepsy cases for which resective surgery cannot be applied. The promising subcortical brain structures are anterior and centromedian nucleus of the thalamus, subthalamic nucleus, and other nuclei to treat epilepsy in light of previous clinical and experimental data. Recently two randomized trials of neurostimulation for controlling refractory epilepsy employed the strategies to stimulate electrodes placed on both anterior thalamic nuclei or near seizure foci in response to electroencephalographically detected epileptiform activity. However, the more large-scale, long-term clinical trials which elucidates optimal stimulation parameters, ideal selection criteria for epilepsy DBS should be performed before long. In order to continue to advance the frontier of this field, it is imperative to have a good grasp of the current body of knowledge.

Thalamic Deep Brain Stimulation for Writer's Cramp

  • Cho, Chul-Bum;Park, Hae-Kwan;Lee, Kyung-Jin;Rha, Hyoung-Kyun
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권1호
    • /
    • pp.52-55
    • /
    • 2009
  • Writer's cramp is a type of idiopathic focal hand dystonia characterized by muscle cramps that accompany execution of the writing task specifically. There has been renewed interest in neurosurgical procedures for the treatment of dystonia over the past several years. In particular, deep brain stimulation (DBS) has received increasing attention as a therapeutic option for patients with dystonia. However, to date, limited reporters made investigations into DBS in relation to the Writer's cramp. In this case, unilateral Ventro-oralis complex (Vo) DBS resulted in a major improvement in patient's focal dystonic movement disorders. Her post-operative Burke-Fahn-Marsden Dystonia Rating (BFMDR) scale demonstrated 1 compared with pre-operative BFMDR scale 4. We conclude that thalamic Vo complex DBS maybe an important neurosurgical therapeutic option for Writer's cramp.

Change of Extracellular Glutamate Level in Striatum during Deep Brain Stimulation of the Entopeduncular Nucleus in Rats

  • Lee, Hyun-ju;Sung, Jae Hoon;Hong, Jae Taek;Kim, Il Sup;Yang, Seung Ho;Cho, Chul Bum
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권2호
    • /
    • pp.166-174
    • /
    • 2019
  • Objective : Globus pallidus interna (GPi) is acknowledged as an essential treatment for advanced Parkinson's disease (PD). Nonetheless, the neurotransmitter study about its results is undiscovered. The goal of this research was to examine influences of entopeduncular nucleus (EPN) stimulation, identical to human GPi, in no-lesioned (NL) rat and 6-hydroxydopamine (6-HD)-lesioned rat on glutamate change in the striatum. Methods : Extracellular glutamate level changes in striatum of NL category, NL with deep brain stimulation (DBS) category, 6-HD category, and 6-HD with DBS category were examined using microdialysis and high-pressure liquid chromatography. Tyrosine hydroxylase (TH) immunoreactivities in substantia nigra and striatum of the four categories were also analyzed. Results : Extracellular glutamate levels in the striatum of NL with DBS category and 6-HD with DBS category were significantly increased by EPN stimulation compared to those in the NL category and 6-HD category. EPN stimulation had no significant effect on the expression of TH in NL or 6-HD category. Conclusion : Clinical results of GPi DBS are not only limited to direct inhibitory outflow to thalamus. They also include extensive alteration within basal ganglia.