• Title/Summary/Keyword: DAFUL

Search Result 18, Processing Time 0.022 seconds

Physics-based Diagnostics on Gear Faults Using Transmission Error (전달오차를 이용한 물리기반(Physics-Based) 기어고장진단 이론연구)

  • Park, Jungho;Ha, Jongmoon;Choi, Jooho;Park, Sungho;Youn, Byeng D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.505-508
    • /
    • 2014
  • Transmission error (TE) is defined as "the angular difference between the ideal output shaft position and actual position". As TE is one of the major source of the noise and vibration of gears, it is originally studied with relation of the noise and vibration of the gears. However, recently, with the relation of mesh stiffness, TE has been studied for fault detection of spur gear sets. This paper presents a physics-based theory on fault diagnostics of a planetary gear using transmission error. After constructing the lumped parameter model using DAFUL, multi-body dynamics software, we developed a methodology to diagnose the faults of the planetary gear including phase calculation, signal processing. Using developed methodology, we could conclude that TE could be a good signal for fault diagnostics of a planetary gear.

  • PDF

Kinematic Parameter Optimization of Jumping Robot Using Energy Conversion of Elastic Body (탄성체의 에너지 변환을 이용한 점프 로봇의 기구변수 최적화)

  • Choi, JaeNeung;Lee, Sangho;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • Various jumping robot platforms have been developed to carry out missions such as rescues, explorations, or inspections of dangerous environments. We suggested a jumping robot platform using energy conversion of the elastic body like the bar of a pole vault, which is the main part in which elastic force occurs. The compliant link was optimized by an optimization method based on Taguchi methodology, and the robot's leaping ability was improved. Among the parameters, the length, width, and thickness of the link were selected as design variables first while the others were fixed. The level of the design variables was settled, and an orthogonal array about its combination was made. In the experiment, dynamic simulations were conducted using the DAFUL program, and response table and sensitivity analyses were performed. We found optimized values through a level average analysis and sensitivity analysis. As a result, the maximum leaping height of the optimized robot increased by more than 6.2% compared to the initial one, and these data will be used to design a new robot.

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

A Study on a Dynamics Simulation Program Development for Floating Wind Turbines (부유식 풍력발전 시스템 동역학 해석 프로그램 개발 연구)

  • Rim, Chae-Whan;Song, Jin-Seop;Chung, Tae-Young;Moon, Seok-Jun;Go, Jin-Yong;Lee, Sung-Kyun;Bae, Dae-Sung;Bae, Dong-Hee
    • Journal of Wind Energy
    • /
    • v.2 no.2
    • /
    • pp.30-37
    • /
    • 2011
  • A floating wind turbine dynamic simulation program, WindHydro, is newly developed taking into account wind inflow and incident wave. WindHydro consists of 5 modules, HDFloat for hydrodynamics, HDProp for hydrodynamic property calculation, HDMoor for mooring dynamics, AeroDyn for aerodynamics, DAFUL for multi-body dynamics with nonlinear elasticity, and interface program that connects each calculation module. A turbulent wind and regular wave load case is simulated for the 5-MW OC3-Hywind with a spar bouy platform and catenary mooring lines. The results are compared with the results of the FAST(developed by NREL). As a result, the overall system responses from WindHydro and FAST agree well although some differences in the generator responses are observed.

Fatigue CAE Analysis of a Rebar Bending Machine Roller (철근 밴딩기 롤러의 피로파괴 CAE 해석)

  • Shin, Yu-Jeong;CHoi, Chang-Hwan;Lee, Sung-gun;Kim, Jin-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The rebar factory production process involves the repetitive bending of rebars. Therefore, the fatigue failure of the rebar bending machine needs to be considered. In this paper, fatigue analysis of the rebar machine was performed using the commercial software DAFUL, which is based on MFBD (Multi Flexible Body Dynamics). The rotating roller, fixing roller and rebar were modeled by the finite element method. The rebar bending process is simulated and the mechanical stresses on the rollers are calculated. Structural analysis of the rebar bending roller was performed using the maximum bending angle of $180^{\circ}$ and maximum processing rebar diameter of ${\Phi}19mm$. Then, for fatigue analysis, the S-N curve of STD-11 was. The fatigue life of rollers is estimated by modified Goodman diagram. The fatigue life range of the rotating roller is $2.99961{\times}10^5{\sim}1{\times}10^8$ while that of the fixed roller is $2.53142{\times}10^5{\sim}1{\times}10^8$. STD-11 has an infinite life cycle after $1{\times}10^8$. Therefore, the rollers of the rebar bending machine may be expected to suffer fatigue failure. Thus, we performed a parameter study of fatigue life according to various axial radii of the fixed roller and rotating roller, and redesign of the rebar bending machine. Consequently, the axial radius of the fixed roller and rotating roller was found to be 35~37.5mm and 30~35mm, respectively, and an infinite life cycle was confirmed at these.

A Dynamic Analysis of 150 ton Winch using Ocean Environment Data (해양 환경 데이터를 이용한 150톤 윈치의 동특성 해석)

  • Lee, Chang-Ho;Min, Cheon-Hong;Kim, Hyung-Woo;Jang, Jin-Woo;Hwang, Dong-Hwan;Rhyu, Yong-Suk
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.205-211
    • /
    • 2017
  • This paper seeks to provide a dynamic analysis of a 150 ton winch based on ocean environmental data. The winch model that was subjected to analysis was modeled from CAD to each subsystem by the commercial software DAFUL. The winch model has tree brake systems (disk brake, band brake and ratchet brake). The rotation motion of the motor and contact elements of the brake are applied to the winch model in order to analyze its dynamic characteristics. In addition, a crane-barge was modeled to apply ocean environmental data. The motion data of the crane-barge was produced by means of the RAO(Response Amplitude Operator) of the barge and wave spectrum. The reaction force of the translational joint was measured instead of the tension of the cable. The brake performance of the winch was produced and assessed based on the operating motion of the crane-barge.

Multi-body Dynamic Analysis for Tripod Constant Velocity Joint (트라이포드 타입 등속조인트의 다물체 동역학 해석)

  • Song, Myung-Eui;Lim, Young-Hun;Cho, Hui-Je;Bae, Dae-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • The paper proposes a multi-body dynamic simulation to numerically evaluate the generated axial force(G.A.F) and plunging resistant force(P.R.F) practically related to the shudder and idling vibration of an automobile. A numerical analysis of two plunging types of CV joints, tripod joint(TJ) and very low axial tripod joint(VTJ), is conducted using the commercial program DAFUL. User-defined subroutines of a friction model illustrating the contacted parts of the outboard and inboard joint are subsequently developed to overcome the numerical instability and improve the solution performance. The Coulomb friction effect is applied to describe the contact models of the lubricated parts in the rolling and sliding mechanisms. The numerical results, in accordance with the joint articulation angle variation, are validated with experimentation. The offset between spider and tulip housing is demonstrated to be the critical role in producing the 3rd order component of the axial force that potentially causes the noise and vibration in vehicle. The VTJ shows an excellent behavior for the shudder when compared with TJ. In addition, a flexible nonlinear contact analysis coupled with rigid multi-body dynamics is also performed to show the dynamic strength characteristics of the rollers, housing, and spider.

Arrangement Plan of Buoyancy Modules for the Stable Operation of the Flexible Riser in a Deep-Seabed Mining System (심해저 채광 시스템에서 유연관의 안정적인 운용을 위한 부력재 배치 설계)

  • Oh, Jae-Won;Min, Cheon-Hong;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Lim, Jun-Hyun;Kim, Hyung-Woo
    • Ocean and Polar Research
    • /
    • v.37 no.2
    • /
    • pp.119-125
    • /
    • 2015
  • This paper focuses on the efficient arrangement plan of buoyancy modules, which plan is used to secure the safe operation and structural stability of a marine riser. The marine riser is connected between a vessel and seabed devices. The movement of the vessel and the seabed devices are affected by the motion of the riser. The riser of a deep-seabed integrated mining system exerts a strong influence on the healthy transfer of minerals. So, buoyancy modules must be equipped to compensate for the problem which is the structure stability and the dynamic motion. Installation locations and quantities of the buoyancy modules are determined by real sea experiments. But this is not easy to do because in real sea experimental conditions the cost is expensive as well as being, time-consuming and dangerous. Therefore, the locations and quantities should be determined by numerical simulation. This method is called simulation-based design. The dynamic analysis models of the riser and the buoyancy modules are built into the commercial software of DAFUL.