Song, Hyun Yeop;Choi, Seung Hyun;Han, Dae Seok;Do, Myung Sik
KSCE Journal of Civil and Environmental Engineering Research
/
v.41
no.4
/
pp.417-428
/
2021
Since future maintenance cost estimation of infrastructure involves uncertainty, it is important to make use of a failure prediction model. However, it is difficult for local governments to develop accurate failure prediction models applicable to infrastructure due to a lack of budget and expertise. Therefore, this study estimated the life expectancy of asphalt road pavement of national highways using the Bayesian Markov Mixture Hazard model. In addition, in order to accurately estimate life expectancy, environmental variables such as traffic volume, ESAL (Equivalent Single Axle Loads), SNP (Structural Number of Pavement), meteorological conditions, and de-icing material usage were applied to retain reliability of the estimation results. As a result, life expectancy was estimated from at least 13.09 to 19.61 years by region. By using this approach, it is expected that it will be possible to estimate future maintenance cost considering local failure characteristics.
Journal of the Korea Institute of Information Security & Cryptology
/
v.15
no.5
/
pp.3-11
/
2005
This paper presents a performance analysis model based on an M/M/1 queue and Poisson distribution of input data traffic. The simulation on a pipelined AES system with processing rate of 10 rounds per clock shows $4.0\%$ higher performance than a non-pipelined version consuming 10 clocks per transaction. Physical implementation of pipelined AES with FPGA takes 3.5 times bigger gate counts than the non-pipelined version whereas the pipelined version yields only $3.5\%$ performance enhancement. The proposed analysis model can be used to optimize cost-performance of AES hardware designs.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.6
/
pp.1053-1065
/
2020
With the recent development of hardware performance and artificial intelligence technology, sophisticated fake videos that are difficult to distinguish with the human's eye are increasing. Face synthesis technology using artificial intelligence is called Deepfake, and anyone with a little programming skill and deep learning knowledge can produce sophisticated fake videos using Deepfake. A number of indiscriminate fake videos has been increased significantly, which may lead to problems such as privacy violations, fake news and fraud. Therefore, it is necessary to detect fake video clips that cannot be discriminated by a human eyes. Thus, in this paper, we propose a deep-fake detection model applied with Bidirectional Convolution LSTM and Attention Module. Unlike LSTM, which considers only the forward sequential procedure, the model proposed in this paper uses the reverse order procedure. The Attention Module is used with a Convolutional neural network model to use the characteristics of each frame for extraction. Experiments have shown that the model proposed has 93.5% accuracy and AUC is up to 50% higher than the results of pre-existing studies.
The carbon fiber reinforced plastic manufacturing process has a problem in that a dimensional error occurs due to thermal deformation such as residual stress, spring-in, and warpage. The main causes of thermal deformation are various, including the shape of the product, the chemical shrinkage, thermal expansion of the resin, and the mold effect according to the material and surface condition of the mold. In this study, a viscoelastic model was applied to the plate model to predict the thermal deformation. The effects of chemical shrinkage and thermal expansion of the resin, which are the main causes of thermal deformation, were analyzed, and the analysis technique of the 3-D viscoelastic model with and without mold was also studied. Then, the L-shaped mold effect was analyzed using the verified 3D viscoelastic model analysis technique. The results show that different residual deformation occurs depending on the surface condition even when the same mold is used.
Real-time control systems are growing rapidly as infrastructure technologies such as IoT and mobile communication develop and services that value real-time such as factory management and vehicle operation checks increase. Various solutions have been proposed to increase the time sensitivity of this system, but most real-time control systems are currently composed of local servers and multiple clients located in control stations, which are transmitted to local servers where control systems are located. In this paper, we proposed an edge computing-based real-time control model that can reduce the time it takes for the bus information system, one of the real-time control systems, to provide the information to the user at the time it collects the information. Simulating the existing model and the edge computing model, the edge computing model confirmed that the cost for users to receive data is reduced from at least 10% to up to 80% compared to the existing model.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.16
no.5
/
pp.307-314
/
2023
As supercomputing and hardware technology advances, climate prediction models are improving. The Korean Meteorological Administration adopted GloSea5 from the UK Met Office and now operates an updated GloSea6 tailored to Korean weather. Universities and research institutions use Low-GloSea6 on smaller servers, improving accessibility and research efficiency. In this paper, profiling Low-GloSea6 on smaller servers identified the tri_sor_dp_dp subroutine in the tri_sor.F90 atmospheric model as a CPU-intensive hotspot. Applying linear regression, a type of machine learning, to this function showed promise. After removing outliers, the linear regression model achieved an RMSE of 2.7665e-08 and an MAE of 1.4958e-08, outperforming Lasso and ElasticNet regression methods. This suggests the potential for machine learning in optimizing identified hotspots during Low-GloSea6 execution.
Jeong Rok Lee;Dae Woong Lee;Sae Hyun Jeong;Sang Jeong
Journal of the Society of Disaster Information
/
v.19
no.4
/
pp.968-975
/
2023
Purpose: We would like to confirm that the false positive rate of flames/smoke is high when detecting fires. Propose a method and dataset to recognize and classify fire situations to reduce the false detection rate. Method: Using the video as learning data, the characteristics of the fire situation were extracted and applied to the classification model. For evaluation, the model performance of Yolov8 and Slowfast were compared and analyzed using the fire dataset conducted by the National Information Society Agency (NIA). Result: YOLO's detection performance varies sensitively depending on the influence of the background, and it was unable to properly detect fires even when the fire scale was too large or too small. Since SlowFast learns the time axis of the video, we confirmed that detects fire excellently even in situations where the shape of an atypical object cannot be clearly inferred because the surrounding area is blurry or bright. Conclusion: It was confirmed that the fire detection rate was more appropriate when using a video-based artificial intelligence detection model rather than using image data.
Journal of the Korea Society of Computer and Information
/
v.29
no.4
/
pp.39-46
/
2024
Many researchers make efforts to evaluate water quality using various models. Such models require a dataset without missing values, but in real world, most datasets include missing values for various reasons. Simple deletion of samples having missing value(s) could distort distribution of the underlying data and pose a significant risk of biasing the model's inference when the missing mechanism is not MCAR. In this study, to explore the most appropriate technique for handing missing values in water quality data, several imputation techniques were experimented based on existing KNN and MICE imputation with/without the generative neural network model, Autoencoder(AE) and Denoising Autoencoder(DAE). The results shows that KNN and MICE combined imputation without generative networks provides the closest estimated values to the true values. When evaluating binary classification models based on support vector machine and ensemble algorithms after applying the combined imputation technique to the observed water quality dataset with missing values, it shows better performance in terms of Accuracy, F1 score, RoC-AuC score and MCC compared to those evaluated after deleting samples having missing values.
Transactions of the Korean Society of Mechanical Engineers A
/
v.34
no.10
/
pp.1427-1435
/
2010
A mixed finite element model was developed using the classical plate theory to analyze the nonlinear bending of a plate. The appropriate weight functions for the constraints integrated over the domain were determined by the Lagrange multiplier method by using the principle of minimum virtual energy; which provides the constitutive relations between force-like variables and strains. All of detail terms of element wise coefficient matrices and associate tangent matrices to be used in the Newton iterative method are presented. Then, the linear solutions of the current model and those of the traditional displacement model under the SS (simple support) boundary conditions were compared with the existing analytical solution. The post-processed images of the nonlinear results of the force-like variables are presented to show the continuity of the solutions at the joint of the element boundaries. Finally, the converged nonlinear finite element solutions of the current model are compared with those of existing traditional displacement model.
When sound waves propagate over long distances in shallow water, measured transmission loss is greater than predicted one using underwater acoustic model with the Rayleigh reflection model due to inhomogeneity of the bottom. Accordingly, the US Navy predicts sound wave propagation by applying the empirical formula-based High Frequency Bottom Loss (HFBL) model. In this study, the measurement and analysis of transmission loss was conducted using mid-frequency (2.3 kHz, 3 kHz) in the shallow water of the East Sea in summer. BELLHOP eigenray tracing output shows that only sound waves with lower grazing angle than the critical angle propagate long distances for several kilometers or more, and the difference between the predicted transmission loss based on the Rayleigh reflection model and the measured transmission loss tend to increase along the propagation range. By comparing the Rayleigh reflection model and the HFBL model at the high grazing angle region, the bottom province, the input value of the HFBL model, is estimated and BELLHOP transmission loss with HFBL model is compared to measured transmission loss. As a result, it agrees well with the measurements of transmission loss.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.