• 제목/요약/키워드: D-optimal experimental design

검색결과 199건 처리시간 0.022초

AFPM 전동기의 오버행 효과에 관한 연구 (Overhang Effect on the Axial Flux Permanent Magnet Motor)

  • 우동균
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.769-772
    • /
    • 2016
  • In this paper, the overhang structure was applied to the axial flux permanent magnet (AFPM) motor. This paper describes the overhang effect in the AFPM motor. Moreover, the overhang effect was analyzed according to the different overhang length and an optimal overhang structure was proposed. Finally, the proposed structure was applied to design, analysis and experiment of prototype motors. Through the comparison between 3D finite element analysis results and experimental ones, the validity of proposed structure is clarified.

반응면 기법을 이용한 항공기 날개 스파 단면적의 최적화 연구 (Aircraft Wing Spar Cross-section Area Optimization with Response Surface Method)

  • 박찬우
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.109-116
    • /
    • 2002
  • The solution of the aircraft wing spar cross-section area optimization problem is obtained by the response surface method. The object function of the problem is wing total weight, design variables are spar cross-section areas, constraints are the conditions that the stresses at the each spar is less than the allowable stress. D-Optimal condition is utilized to obtain the experimental points to construct the response surfaces. D-Optimal experimental points are obtained by the commercial software "Deign-Expert". Response values for the object function and constraints for each experimental point are calculated by the NASTRAN. Response surfaces for object function and constraints are approximated from the response values by the least square method. The optimization solution is obtained by the DOT for the response surfaces of object function and constraints. The optimization results obtained from the response surface are compared with the results obtained by the NASTRAN SOL200.

LLC DC to DC 공진 컨버터의 고주파 변압기 최적화 설계에 관한 연구 (A study on an optimal design of the high frequency transformer in LLC DC to DC resonant converter)

  • 김종해
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.587-600
    • /
    • 2023
  • 본 논문에서는 315W급 65인치 UHD-TV용 LLC DC to DC 공진 컨버터에 사용되고 있는 Slim형 고주파 변압기의 최적화 설계에 대해서 나타낸다. 또한 본 논문에서는 LLC 공진 변압기의 코어 손실 분석, AC 권선 손실 분석 및 권선 배치 최적화 설계를 통해 Slim형 고주파 변압기의 최적화 설계를 수행한다. 특히 본 논문에서는 이론적으로 해석하여 얻어진 결과를 토대로 고효율 및 Slim형 고주파 변압기는 교류 권선 손실 최소화 및 권선 자동화를 위하여 인터리브 및 수직형 권선 구조로 구성한다. 본 논문 제안한 수직형 권선 구조 방식의 Slim형 고주파 변압기의 1차측 권선은 Litz 권선을 2차 권선은 PCB와 동판 권선을 사용하였다. 최종적으로 Maxwell 2D 및 3D Tool을 이용한 시뮬레이션 결과를 토대로 이론 해석의 정당성을 입증하기 위해서 실험 결과를 통해 본 논문에서 제안한 Slim형 고주파 변압기의 최적화 설계를 수행하였다.

Cross Layer Optimal Design with Guaranteed Reliability under Rayleigh block fading channels

  • Chen, Xue;Hu, Yanling;Liu, Anfeng;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권12호
    • /
    • pp.3071-3095
    • /
    • 2013
  • Configuring optimization of wireless sensor networks, which can improve the network performance such as utilization efficiency and network lifetime with minimal energy, has received considerable attention in recent years. In this paper, a cross layer optimal approach is proposed for multi-source linear network and grid network under Rayleigh block-fading channels, which not only achieves an optimal utility but also guarantees the end-to-end reliability. Specifically, in this paper, we first strictly present the optimization method for optimal nodal number $N^*$, nodal placement $d^*$ and nodal transmission structure $p^*$ under constraints of minimum total energy consumption and minimum unit data transmitting energy consumption. Then, based on the facts that nodal energy consumption is higher for those nodes near the sink and those nodes far from the sink may have remaining energy, a cross layer optimal design is proposed to achieve balanced network energy consumption. The design adopts lower reliability requirement and shorter transmission distance for nodes near the sink, and adopts higher reliability requirement and farther transmission distance for nodes far from the sink, the solvability conditions is given as well. In the end, both the theoretical analysis and experimental results for performance evaluation show that the optimal design indeed can improve the network lifetime by 20-50%, network utility by 20% and guarantee desire level of reliability.

3D Topology Optimization of Fixed Offshore Structure and Experimental Validation

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • 한국해양공학회지
    • /
    • 제34권4호
    • /
    • pp.263-271
    • /
    • 2020
  • In this study, we performed a three-dimensional (3D) topology optimization of a fixed offshore structure to enhance its structural stiffness. The proposed topology optimization is based on the solid isotropic material with penalization (SIMP) method, where a volume constraint is applied to utilize an equivalent amount of material as that used for the rule-based scantling design. To investigate the effects of the main legs of the fixed offshore structure on its structural stiffness, the leg region is selectively considered in the design domain of the topology optimization problem. The obtained optimal designs and the rule-based scantling design of the structure are manufactured by 3D metal printing technology to experimentally validate the topology optimization. The behaviors under compressive loading of the obtained optimal designs are compared with those of the rule-based scantling design using a universal testing machine (UTM). Based on the structural experiments, we concluded that by employing the topology optimization method, the structural stiffness of the structure was enhanced compared to that of the rule-based scantling design for an equal amount of the fabrication material. Furthermore, by effectively combining the topology optimization and rule-based scantling methods, we succeeded in enhancing the structural stiffness and improving the breaking load of the fixed offshore structure.

컴퓨터 비전용 조명 시스템 설계 코드 개발 (Development of the Lighting System Design Code for Computer Vision)

  • 안인모;이기상
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권11호
    • /
    • pp.514-520
    • /
    • 2002
  • n industrial computer vision systems, the image quality is dependent on the parameters such as light source, illumination method, optics, and surface properties. Most of them are related with the lighting system, which is designed in heuristic based on the designer's experimental knowledge. In this paper, a design code by which the optimal lighting method and light source for computer vision systems can be found are suggested based on experimental results. The design coed is applied to the design of the lighting system for the transistor marking inspection system, and the overall performance of the machine vision system with the lighting system show the effectiveness of the proposed design code.

Load Characteristics of Engine Main Bearing : Comparison Between Theory and Experiment

  • Cho, Myung-Rae;Oh, Dae-Yoon;Ryu, Seung-Hyuk;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1095-1101
    • /
    • 2002
  • The load characteristics of engine main bearing are very important in the design of crankshaft and engine block. The stiffness of crankshaft and block, or the optimal dimension of the bearing can be determined according to the load level. This paper presents the load characteristics of engine main bearing. Two components of the main bearing load are measured during engine firing and motoring. The vertical and horizontal load components are measured by using the dynamic load cell mounted in each main bearing cap bolt. The measured main bearing loads are compared with calculated results by using the statically determinate method. The theoretical results, provided in this study, agreed well with the experimental results. The presented results are very useful for achieving optimal design of engine.

3D 프린터 기반 수직형 마이크로 모션 스테이지의 최적설계 (Optimal Design of 3D Printer based Piezo-driven Vertical Micro-positioning Stage)

  • 김정현
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.78-85
    • /
    • 2017
  • This paper presents the development of a 3D printer based piezo-driven vertical micro-positioning stage. The stage consists of two flexure bridge structures which amplify and transfer the horizontal motion of the piezo-element into vertical motion of the end-effector. The stage is fabricated with ABS material using a precision 3D printer. This enables a one-body design eliminating the need for assembly, and significantly increases the freedom in design while shortening fabrication time. The design of the stage was optimized using response surface analysis method. Experimental results are presented which demonstrate 100nm stepping in the vertical out-of-plane direction. The results demonstrate the future possibilities of applying 3D printers and ABS material in fabricating linear driven motion stages.

투명성과 강인 안정성을 고려한 1자유도 햅틱 인터페이스 제어기 설계 (1-DOF Haptic Interface Controller Design considering Transparency and Robust Stability)

  • 엄광식;서일홍
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권4호
    • /
    • pp.213-219
    • /
    • 2000
  • In this paper, a controller design method is proposed for haptic interface considering transparency and robust stability. For this, a performance index for the transparency as performance measure is defined in the points of impedance matching and the optimal solution which is minimizing the performance index is obtained by solving H2 optimal problem. In haptic interface, the modeling uncertainties can be restricted to that of haptic device. To implement the robust stabilizing haptic controller to the uncertainties of haptic device, a robust stable condition using H$\infty$ norm from small gain theorem is proposed. To verify the effectiveness of the proposed haptic controller design scheme, numerical examples and experimental results are illustrated for virtual wall consisting of stiffness and damping factor.

  • PDF

Optimization of ultrasound-assisted extraction of glycyrrhizic acid from licorice using response surface methodology

  • Jang, Seol;Lee, A. Yeong;Lee, A. Reum;Choi, Goya;Kim, Ho Kyoung
    • Integrative Medicine Research
    • /
    • 제6권4호
    • /
    • pp.388-394
    • /
    • 2017
  • Background: The present study optimized ultrasound-assisted extraction conditions to maximize extraction yields of glycyrrhizic acid from licorice. Methods: The optimal extraction temperature ($X_1$), extraction time ($X_2$), and methanol concentration ($X_3$) were identified using response surface methodology (RSM). A central composite design (CCD) was used for experimental design and analysis of the results to obtain the optimal processing parameters. Results: Statistical analyses revealed that three variables and the quadratic of $X_1$, $X_2$, and $X_3$ had significant effects on the yields and were followed by significant interaction effects between the variables of $X_2$ and $X_3$ (p<0.01). A 3D response surface plot and contour plots derived from the mathematical models were applied to determine the optimal conditions. The optimum ultrasound-assisted extraction conditions were as follows: extraction temperature, $69^{\circ}C$; extraction time, 34?min; and methanol concentration, 57%. Under these conditions, the experimental yield of glycyrrhizic acid was 3.414%, which agreed closely with the predicted value (3.406%). Conclusion: The experimental values agreed with those predicted by RSM models, thus indicating the suitability of the model employed and the success of RSM in optimizing the extraction conditions.