• Title/Summary/Keyword: D-optimal experimental design

Search Result 199, Processing Time 0.025 seconds

Rotor Position Sensorless Control of Optimal Lead Angle in Bifilar-Wound Hybrid Stepping Motor (복권형 하이브리드 스테핑 전동기의 회전차 위치 센서리스 최적 Lead Angle 제어)

  • Lee, Jong-Eon;Woo, Kwang-Joon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.2
    • /
    • pp.120-130
    • /
    • 1999
  • In this paper, we show that the instantaneous phase current of the bifiler-wound hybrid stepping motor is dependent of lead angle and that the information of motor position is obtained from the instantaneous phase current at ${\pi}/2$ by the theoretical formular and its computer simulation results. From the facts, we design the microcontroller-based motor position sensorless controller of optimal lead angle, which generates the excitation pulses for the closed-loop drives. The controller is consist of microcontroller which has the function of A/D converter, programmable input/output timer, and the transfer table which has the values of optimal lead angle depending on motor velocity, and ROM which has the transfer table of the values of lead angle depending on velocity of motor and the values of instantaneous phase current at ${\pi}/2$. From the design of microcontroller-based controller, we minimize the external interface circuit and obtain flexibility by changing the contents of ROM transfer tables and the control software. We confirm that the designed controller drives the bifilar-wound hybrid stepping motor is the mode of optimal lead angle by comparing the instananeous phase current experimental results and computer simulation results.

  • PDF

A Study on the Optimum Design of Warm-up rate in a Air-Heated Heater System by Using CFD Analysis and Taguchi Method (전산유체해석과 다구찌 방법을 연계한 공기 가열식 히터 시스템의 난방속효성 최적화에 관한 연구)

  • Kim, Min-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.72-82
    • /
    • 2005
  • The objective of this paper is to describe the optimization of design parameters in a large-sized commercial bus heater system by using CFD(computational fluid dynamics) analysis and Taguchi method. In order to obtain the best combination of each control factor which results in a desired performance of heater system, the parameter design of the Taguchi method is adopted for the robust design considering the dynamic characteristic. The research activity may be divided into four phases. The first one is analyzing the problem, i.e., ascertaining the influential factors. In the second phase the levels were set in such a way that their variation would significantly influence the response. In the third phase the experimental runs were designed. In the final phase the planned runs were carried out numerically to evaluate the optimal combination of factors which is able to provide the best response. In this study, eight factors were considered for the analysis: one with two level and seven with three level combinations comprising the $L_{18}(2^1{\times}3^7)$ orthogonal array. The results of this study can be summarized as follows ; (i)The optimum condition of control factor is a set of <$A_2\;B_1\;C_3\;D_3\;E_1\;F_2\;G_3\;H_2$> where A is shape of the outer fin, B is pitch of the outer fin, C is height of the outer fin, D is the inner fin number, E is the inner fin height, F is length of the flame guide, G is diameter of the heating element and H is clearance between air guide and heating element. (ii)The heat capacity of heated discharge air under the optimum condition satisfies the equation y=0.6M w here M is a signal factor. (iii)The warm-up rate improves about three times, more largely as com pared with the current condition, which results in about 9.2minutes reduction.

Measurement of Condensation and Boiling Heat Transfer Coefficients of Non-flammable Mixed Refrigerant for Design of Cryogenic Cooling System for Semiconductor Etching Process (반도체 식각 공정용 초저온 냉각 시스템 설계를 위한 비가연성 혼합냉매 응축 및 비등 열전달 계수 측정)

  • Cheonkyu Lee;Jung-Gil Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.119-124
    • /
    • 2023
  • In this study, experimental approach of the measurement of condensation and evaporation heat transfer coefficients is discussed for mixed refrigerants using in the ultra low-temperature cooling system for semiconductor etching process. An experimental apparatus was described performing the condensation and evaporation heat transfer measurements for mixed refrigerants. The mixed refrigerant used in this study was composed of the optimal mixture determined in previous research, with a composition of Ar:R14:R23:R218 = 0.15:0.4:0.15:0.3. The experiments were conducted over a temperature range from -82℃ to 15℃ and at pressures ranging from 18.5 bar to 5 bar. The convection heat transfer coefficients of the mixed refrigerant were measured at flow rates corresponding to actual operating conditions. The condensation heat transfer coefficient ranged from approximately 0.7 to 0.9 kW/m2K, while the evaporation heat transfer coefficient ranged from 1.0 to 1.7 kW/m2K. The detailed discussion of the experimental methods, procedures, and results were described in this paper.

  • PDF

Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles

  • Mahzad Esmaeili-Falak;Reza Sarkhani Benemaran
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.583-600
    • /
    • 2023
  • The resilient modulus (MR) of various pavement materials plays a significant role in the pavement design by a mechanistic-empirical method. The MR determination is done by experimental tests that need time and money, along with special experimental tools. The present paper suggested a novel hybridized extreme gradient boosting (XGB) structure for forecasting the MR of modified base materials subject to wet-dry cycles. The models were created by various combinations of input variables called deep learning. Input variables consist of the number of W-D cycles (WDC), the ratio of free lime to SAF (CSAFR), the ratio of maximum dry density to the optimum moisture content (DMR), confining pressure (σ3), and deviatoric stress (σd). Two XGB structures were produced for the estimation aims, where determinative variables were optimized by particle swarm optimization (PSO) and black widow optimization algorithm (BWOA). According to the results' description and outputs of Taylor diagram, M1 model with the combination of WDC, CSAFR, DMR, σ3, and σd is recognized as the most suitable model, with R2 and RMSE values of BWOA-XGB for model M1 equal to 0.9991 and 55.19 MPa, respectively. Interestingly, the lowest value of RMSE for literature was at 116.94 MPa, while this study could gain the extremely lower RMSE owned by BWOA-XGB model at 55.198 MPa. At last, the explanations indicate the BWO algorithm's capability in determining the optimal value of XGB determinative parameters in MR prediction procedure.

Optimization of Ingredient Mixing Ratio for Preparation of Sulgidduk with Saltwort (Salicornia herbacea L.) (함초 첨가 설기떡의 재료 혼합비율의 최적화)

  • Jang, Myung-Sook;Park, Jung-Eun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.641-648
    • /
    • 2006
  • In an attempt to get basic data for the utilization of saltwort powder (Salicornia herbaceae L.) as a ingredient in the Sulgidduk. D-optimal design of mixture design showed 14 experimental points including 4 replicates for three independent variables. The three independent variables selected for the experiment were water ($13{\sim}18%$), saltwort powder ($2{\sim}6%$), and sugar ($8{\sim}13%$). The optimum responses variables such as color value. texture, and sensory characteristics were evaluated. The compositional and functional properties of test were measured, and these values were applied to the mathematical models. According to the result of measuring probability of the color value, texture and sensory characteristics were respectively and significance was acknowledged (p<0.05). According to the result of F-test, color values (L, a, b), textural properties (gumminess, chewiness) and sensory characteristics (taste, softness) decided linear model, textural property (hardness) and sensory characteristics (color, smell, moistness, overall acceptance) decided quadratic model. A canonical form and trace plot showed that the influence of each ingredient on the mixture final product. An optimum formulation by numerical and graphical methods were similar. Water, saltwort powder, and sugar were 15.2%, 3.0%, and 9.8% respectively by numerical method, and 15.2%, 3.1%, and 9.7% respectively by graphical method.

Performance Analysis of the Supersonic Nozzle Employed in a Small Liquid-rocket Engine for Ground Firing Test (소형 액체로켓엔진 지상연소시험용 초음속 노즐의 성능해석)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.321-324
    • /
    • 2011
  • A computational analysis of nozzle flow characteristics and plume structure using Reynolds-averaged Navier-Stokes equations with $k-{\omega}$ SST turbulence model was conducted to examine performance of the supersonic nozzle employed in a small liquid-rocket engine for ground firing test. Computed results and experimental outcome of 2-D converging-diverging nozzle flow were compared for verifying the computational capability as well as the turbulence model validity. Numerical computations of 2-D axisymmetric nozzle flow was carried out with the selected model. As a result, flow separation with backflow appeared around the nozzle exit. This investigation was reported as a background data for the optimal nozzle design of small liquid-propellant rocket engine for ground test.

  • PDF

Geometric Optimization of a Microchannel for the Improvement of Temperature Gradient Focusing (온도기울기 농축(TGF) 향상을 위한 미세채널 형상 최적화 연구)

  • Han, Tae-Heon;Kim, Sun-Min
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.17-24
    • /
    • 2011
  • Temperature gradient focusing (TGF) of analytes via Joule heating is achieved when electric field is applied along a microchannel of varying width. The effect of varying width of the microchannel for the focusing performance of the device was numerically studied. The governing equations were implemented into a quasi-1D numerical model along a microchannel. The validity of the numerical model was verified by a comparison between numerical and experimental results. The distributions of temperature, velocity, and concentration along a microchannel were predicted by the numerical results. The narrower middle width and wider outside width of the channel having the fixed length contribute to improve the focusing performance of the device. However, too narrow middle width of the channel generates a higher temperature which can cause the problems including sample denaturation and buffer solution boiling. Therefore, the channel geometry should be optimized to prevent these problems. The optimal widths of the microchannel for the improvement on TGF were proposed and this model can be easily applied to lab-on-a-chip (LOC) applications where focusing is required based on its simple design.

Maximum Torque Control of IPMSM Drive with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.566-569
    • /
    • 2005
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM drive using artificial intelligent(AI) controller. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using learning mechanism fuzzy neural network(LM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also. this paper is proposed the experimental results to verify the effectiveness of AI controller.

  • PDF

Measurement of Flux Linkage in Salient Pole Rotor Type Single Phase SRM (돌극형 회전화 단상 SRM의 쇄교자속 측정)

  • Kim, Jun-Ho;Lee, Eun-Woong;Oh, Young-Woong;Lee, Min-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.123-125
    • /
    • 2001
  • Salient pole rotor type single phase SRM(switched reluctance motor) uses the magnetic fluxes of radial and axial direction at the same time. Therefore the output power per unit volumn is very high and shaft length can be shorter than any other types of SRM with same output. Also, It can be manufactured with low cost thanks to simple structure and driving circuit. We already designed and manufactured prototype using the dynamic output equation of general rotating machine but the effect by salient pole structure was not considered. The most optimal design parameters for salient pole rotor type single phase SRM will be selected by comparing and analyzing the results from 3D FEM analysis, experimental values of the torque versus speed characteristics. and the nux linkage of prototype. Results for the former 3D FEM analysis and torque vs. speed characteristics were already obtained. Finally, we will measure the nux linkage of salient pole rotor type single phase SRM.

  • PDF

Development of Caliper System for Geometry PIG (지오메트리 피그용 캘리퍼 시스템 개발)

  • Yoo, H.R.;Kim, D.K.;Cho, S.H.;Park, S.H.;Park, S.S.;Park, D.J.;Koo, S.J.;Rho, Y.W.;Park, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.228-234
    • /
    • 2001
  • NTMS(Non-contact Tilted-angle Measuring System) is developed by using the principle that the magnetic field of an anisotropic magnet's inner space is uniform and it's possible to measure the strength of the magnetic field using a linear hall effect sensor. In order to implement the caliper system of the geometry PIG(Pipeline Inspection Gauge) which has high accuracy and proper output voltage of the hall sensor without additional driving module or a signal amplifier, it is necessary to consider the size of the magnet, the inner space and back-yoke and the position of pin-hole in the magnet. So the optimal design method of the caliper system is proposed through analysis of NTMS's magnetic field adopting a FEM(Finite Element Method). The experimental results show that the developed caliper system can be used for the geometry pig with good performances.

  • PDF