• Title/Summary/Keyword: D-optimal Method

Search Result 1,484, Processing Time 0.031 seconds

Real-Time Optimal Control for Nonlinear Dynamical Systems Based on Fuzzy Cell Mapping

  • Park, H.T.;Kim, H.D.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.388-388
    • /
    • 2000
  • The complexity of nonlinear systems makes it difficult to ascertain their behavior using classical methods of analysis. Many efforts have been focused on the advanced algorithms and techniques that hold the promise of improving real-time optimal control while at the same time providing higher accuracy. In this paper, a fuzzy cell mapping method of real-time optimal control far nonlinear dynamical systems is proposed. This approach combines fuzzy logic with cell mapping techniques in order to find the optimal input level and optimal time interval in the finite set which change the state of a system to achieve a desired obiective. In order to illustrate this method, we analyze the behavior of an inverted pendulum using fuzzy cell mapping.

  • PDF

Effect of groundwater level change on piled raft foundation in Ho Chi Minh City, Viet Nam using 3D-FEM

  • Kamol Amornfa;Ha T. Quang;Tran V. Tuan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.387-396
    • /
    • 2023
  • Ground subsidence, which is a current concern that affects piled raft foundations, has occurred at a high rate in Ho Chi Minh City, Viet Nam, due primarily to groundwater pumping for water supply. In this study, the groundwater level (GWL) change affect on a piled raft foundation was investigated based on the three-dimensional finite element method (3D-FEM) using the PLAXIS 3D software. The GWL change due to global groundwater pumping and dewatering were simulated in PLAXIS 3D based on the GWL reduction and consolidation. Settlement and the pile axial force of the piled raft foundation in Ho Chi Minh subsoil were investigated based on the actual design and the proposed optimal case. The actual design used the piled foundation concept, while the optimal case applied a pile spacing of 6D using a piled raft concept to reduce the number of piles, with little increased settlement. The results indicated that the settlement increased with the GWL reduction, caused by groundwater pumping and dewatering. The subsidence started to affect the piled raft foundation 2.5 years after construction for the actual design and after 3.4 years for the optimal case due to global groundwater pumping. The pile's axial force, which was affected by negative skin friction, increased during that time.

Development of the Optimal Performance Based Seismic Design Method for 2D Steel Moment Resisting Frames (2차원 철골 구조물의 최적 성능기반 내진설계법 개발)

  • Kwon Bong-Keun;Lee Hyun-Kook;Kwon Yun-Man;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.636-643
    • /
    • 2005
  • Recently, performance based seismic design (PBSD) methods have been suggested in numerous forms and widely studied as a new concept of seismic design. The PBDSs are far from being practical method due to complexity of algorithms resided in the design philosophy. In this paper, optimal seismic design method based on displacement coefficient method (DCM) described in FEMA 273 is developed. As an optimizer simple genetic algorithms are used for implementations. In the optimization problem formulated in this Paper, strength design criteria stiffness design criteria, and nonlinear response criteria specified in DCM are included in design constraints. The optimal performance based design(OPBD) method is applied to seismic design of a 3-story two-dimensional steel frame structures.

  • PDF

Method of 3D Body Surface Segmentation and 2D Pattern Development Using Triangle Simplification and Triangle Patch Arrangement (Triangle Simplification에 의한 3D 인체형상분할과 삼각조합방법에 의한 2D 패턴구성)

  • Jeong, Yeon-Hee;Hong, Kyung-Hi;Kim, See-Jo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.9_10 s.146
    • /
    • pp.1359-1368
    • /
    • 2005
  • When we develop the tight-fit 2D pattern from the 3D scan data, segmentation of the 3D scan data into several parts is necessary to make a curved surface into a flat plane. In this study, Garland's method of triangle simplification was adopted to reduce the number of data point without distorting the original shape. The Runge-Kutta method was applied to make triangular patch from the 3D surface in a 2D plane. We also explored the detailed arrangement method of small 2D patches to make a tight-fit pattern for a male body. As results, minimum triangle numbers in the simplification process and efficient arrangement methods of many pieces were suggested for the optimal 2D pattern development. Among four arrangement methods, a block method is faster and easier when dealing with the triangle patches of male's upper body. Anchoring neighboring vertices of blocks to make 2D pattern was observed to be a reasonable arrangement method to get even distribution of stress in a 2D plane.

ON THE CONSTRUCTION OF OPTIMAL LINEAR CODES OF DIMENSION FOUR

  • Atsuya Kato;Tatsuya Maruta;Keita Nomura
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1237-1252
    • /
    • 2023
  • A fundamental problem in coding theory is to find nq(k, d), the minimum length n for which an [n, k, d]q code exists. We show that some q-divisible optimal linear codes of dimension 4 over 𝔽q, which are not of Belov type, can be constructed geometrically using hyperbolic quadrics in PG(3, q). We also construct some new linear codes over 𝔽q with q = 7, 8, which determine n7(4, d) for 31 values of d and n8(4, d) for 40 values of d.

3-D Optimal Disposition of Direction Finders (방향탐지장비의 삼차원 최적 배치)

  • Lee, Ho-Joo;Kim, Chang-Geun;Kang, Sung-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.765-772
    • /
    • 2011
  • In this paper, a simulation-based method is presented to dispose direction finders in three dimensional space for locating targets using the directional data. A direction finder(DF) is a military weapon that is used to find locations of targets that emit radio frequencies by operating two or more DFs simultaneously. If one or more DFs are operated in the air, the accuracy of location estimation can be enhanced by disposing them in a better configuration. By extending the line method, which is a well-known algorithm for 2-D location estimation, into 3-D space, the problem of 3-D location estimation is defined as an nonlinear programming form and solved analytically. Then the optimal disposition of DFs is considered with the presented method in which methods of simulation and search technique are combined. With the suggested algorithm for 3-D disposition of DFs, regions in which targets exist can be effectively covered so that the operation effect of DF be increased.

Analysis of the Timing Detector's Characteristics of the Modified BECM(M-BECM) Algorithm (M-BECM의 타이밍 검출기 출력 특성 분석)

  • 이경하;김용훈;최형진
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.28-38
    • /
    • 1997
  • Previously, we have proposed the M-BECM(Modified-Band Edge Component Maximization), which is a symbol synchronization algorithm based on spectral line method for all-digital high speed digital communications. However, Until now, the characteristics of the timing detector based on the spectral line method including M-BECM was not analyzed, particularly the effect of a timing offset at the optimal convergence pont. In this paper, we analyze the timing dtector's characteristics of the M-BECM and present optimal design value. First, the expression for the timing detector's mean value(often called its S-Curver) as a function of the normalized symbol timing offset is derived. Next, the P $D_{bias}$, the value for compensating the timing offset at an optimal convergence point, and the bandwidth of bandpass filter in the timing detector are calculated. It is also shown and analyzed that the P $D_{bias}$ is affected by varuous factors such as the excess bandwidth of input signal, frequency offsets, noise and particularly, the excess bandwidth of input signal is a major parameter to decide P $D_{bias}$. Finally, analytic resutls are compared to simulation results.

  • PDF

A Study on the Magnetic Field Analysis and Optimal Core Design of DC Current Sensor for Vehicles (자동차용 DC Current Sensor의 자장해석 및 코어 최적형상 설계에 관한 연구)

  • Lee, Hee-Sung;Park, Jong-Min;Kim, Choon-Sik;Kim, Sung-Gaun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.74-83
    • /
    • 2009
  • Recently, usage of electric and electronic system for car increases rapidly. Consequently power monitoring supplied to the system is essential for management and controlling. Generally, battery status is monitored through measuring and diagnosing the current measurement method utilizing Hall Effect. Therefore, in this paper, we analysed magnetic field to develop the solution of DC current sensor using Hall Effect which is the core of design and development. By analysing the magnetic field by FEM using Maxwell 3D software, the location of the highest output current and stable part in the Hall IC sensor was shown. Also, the optimal core design of DC current sensor using parametric and Simplex method was presented. A car battery charge and discharge process dependant on time effect on the changing of magnetic field was simulated and compared to the result from the experiment result of actual vehicle.