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ON THE CONSTRUCTION OF OPTIMAL LINEAR CODES

OF DIMENSION FOUR

Atsuya Kato, Tatsuya Maruta, and Keita Nomura

Abstract. A fundamental problem in coding theory is to find nq(k, d),
the minimum length n for which an [n, k, d]q code exists. We show that

some q-divisible optimal linear codes of dimension 4 over Fq , which are not

of Belov type, can be constructed geometrically using hyperbolic quadrics
in PG(3, q). We also construct some new linear codes over Fq with q =

7, 8, which determine n7(4, d) for 31 values of d and n8(4, d) for 40 values

of d.

1. Introduction

We denote by Fq the field of q elements. Let Fn
q be the vector space of

n-tuples over Fq. An [n, k, d]q code C is a k-dimensional subspace of Fn
q with

minimum Hamming weight d = min{wt(c) | c ∈ C, c ̸= (0, . . . , 0)}, where wt(c)
is the number of non-zero entries in the vector c. The weight distribution of C is
the list of non-zero integers Ai, where Ai is the number of codewords of weight
i, 0 ≤ i ≤ n. A fundamental problem in coding theory is to find nq(k, d), the
minimum length n for which an [n, k, d]q code exists [12,13]. An [n, k, d]q code
satisfies the inequality called the Griesmer bound [11, 12]:

n ≥ gq(k, d) =

k−1∑
i=0

⌈
d/qi

⌉
,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. The values
of nq(k, d) are determined for all d only for some small values of q and k. For
k = 3, nq(3, d) is known for all d for q ≤ 9 [1]. See [25] for the updated table
of nq(k, d) for some small q and k. See also [10] for the updated linear codes
bound. We mainly deal with linear codes of dimension k = 4. See [7] for
the construction of optimal linear codes of dimension k = 5. The following
theorems give some known values of nq(4, d).
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Theorem 1.1 ([4, 22, 24]). For all prime power q, nq(4, d) = gq(4, d) for 1 ≤
d ≤ q − 2, q2 − 2q + 1 ≤ d ≤ q2 − q, q3 − 2q2 + 1 ≤ d ≤ q3 − 2q2 + q,
q3 − q2 − q + 1 ≤ d ≤ q3 + q2 − q, 2q3 − 5q2 + 1 ≤ d ≤ 2q3 − 5q2 + 3q,
2q3 − 4q2 + 1 ≤ d ≤ 2q3 − 4q2 + 2q and any d ≥ 2q3 − 3q2 + 1.

Theorem 1.2 ([4,18,19,22,24]). For q ≥ 7, nq(4, d) = gq(4, d)+1 for q2− q+
1 ≤ d ≤ q2−1, q3−2q2−q+1 ≤ d ≤ q3−2q2−⌊(q+1)/2⌋, 2q3−5q2−q+1 ≤ d ≤
2q3−5q2, 2q3−4q2−3q+1 ≤ d ≤ 2q3−4q2, 2q3−3q2−3q+1 ≤ d ≤ 2q3−3q2.

See [25] for q ≤ 5. An [n, k, d]q code is called m-divisible if all codewords
have weights divisible by an integer m > 1. We show that some optimal linear
codes of dimension 4 can be constructed as q-divisible codes using hyperbolic
quadrics in PG(3, q) as follows.

Theorem 1.3. Assume q ≥ 7.

(a) There exist q-divisible [gq(4, d), 4, d]q codes for d = q3 − 2q2 + q, 2q3 −
5q2 + q, 2q3 − 5q2 + 2q, 2q3 − 5q2 + 3q, 2q3 − 4q2 + q, 2q3 − 4q2 + 2q.

(b) There exist q-divisible [gq(4, d) + 1, 4, d]q codes for d = q3 − 3q2 + 3q,
2q3 − 6q2 + 6q, 2q3 − 5q2 − αq with 0 ≤ α ≤ q − 4, 2q3 − 5q2 + 4q,
2q3 − 4q2 − βq with 0 ≤ β ≤ q − 3.

It can be proved that [gq(4, d), 4, d]q codes do not exist for d = q3 − 3q2 +3q
for 7 ≤ q ≤ 13, giving the following.

Theorem 1.4. nq(4, d) = gq(4, d) + 1 for d = q3 − 3q2 + 3q for 7 ≤ q ≤ 13.

As for q = 8, it is known that n8(4, 337) = g8(4, 337) + 1 or g8(4, 337) + 2.
Since one can obtain an [n − 1, k, d − 1]q code from a given [n, k, d]q code by
puncturing, Theorem 1.4 implies that n8(4, d) = g8(4, d)+1 for 337 ≤ d ≤ 344,
which is a new result, see [25].

We also construct some new codes over Fq with q = 7, 8, which determine
n7(4, d) for 31 values of d and n8(4, d) for 40 values of d.

Theorem 1.5.

(a) n7(4, d) = g7(4, d) for 113 ≤ d ≤ 119 and 400 ≤ d ≤ 413.
(b) n7(4, d) = g7(4, d) + 1 for 124 ≤ d ≤ 126 and 127 ≤ d ≤ 133.
(c) n7(4, d) ≤ g7(4, d) + 1 for d = 105, 120 ≤ d ≤ 123 and 148 ≤ d ≤ 154.

Theorem 1.6.

(a) n8(4, d) = g8(4, d) for 641 ≤ d ≤ 672.
(b) n8(4, d) = g8(4, d) + 1 for 345 ≤ d ≤ 352.
(c) n8(4, d) ≤ g8(4, d) + 1 for 329 ≤ d ≤ 336.

Our main results are Theorems 1.3-1.6. This paper is organized as follows.
In Section 2, we give the geometric methods to construct q-divisible codes or to
investigate a given code through projective geometry. In Section 3, we present
some construction of optimal q-divisible codes using hyperbolic quadrics, which
yields Theorem 1.3. In Section 4, we prove the non-existence of some Griesmer
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codes, giving Theorem 1.4 by Theorem 1.3(b). In Section 5, we present some
new linear codes over Fq for q = 7, 8 to prove Theorems 1.5 and 1.6.

2. Geometric methods

In this section, we give geometric methods to construct new codes from
old ones or to prove the non-existence of linear codes with certain parameters
through projective geometry. We denote by PG(r, q) the projective geometry
of dimension r over Fq. A j-flat is a projective subspace of dimension j in
PG(r, q). The 0-flats, 1-flats, 2-flats, (r − 2)-flats and (r − 1)-flats are called
points, lines, planes, secundums and hyperplanes, respectively. We denote by
θj the number of points in a j-flat, i.e., θj = (qj+1 − 1)/(q − 1).

Let C be an [n, k, d]q code having no coordinate which is identically zero.
The columns of a generator matrix of C can be considered as a multiset of n
points in Σ = PG(k−1, q) denoted by MC . A point P in Σ is called an i-point if
it has multiplicity mC(P ) = i in MC . Denote by γ0 the maximum multiplicity
of a point from Σ in MC and let Ci be the set of i-points in Σ, 0 ≤ i ≤ γ0. We
denote by ∆1 + · · ·+∆s the multiset consisting of the s sets ∆1, . . . ,∆s in Σ.
We write s∆ for ∆1+ · · ·+∆s when ∆1 = · · · = ∆s. If a multiset M is written
as M1+M2 with two multisets M1, M2, we also write M2 = M−M1. Note
that MC =

∑γ0

i=1 iCi. For any subset S of Σ, the multiplicity of S, denoted by
mC(S), is defined as

mC(S) =
∑
P∈S

mC(P ) =

γ0∑
i=1

i·|S∩Ci|,

where |T | denotes the number of elements in a set T . Then we obtain the
partition Σ =

⋃γ0

i=0 Ci such that n = mC(Σ) and

n− d = max{mC(π) | π ∈ Fk−2},(1)

where Fj denotes the set of j-flats in Σ. Such a partition of Σ is called an
(n, n − d)-arc of Σ. Conversely an (n, n − d)-arc of Σ gives an [n, k, d]q code
in the natural manner. A line l with t = mC(l) is called a t-line. A t-plane, a
t-hyperplane and so on are defined similarly. Let

γj = max{mC(∆) | ∆ ∈ Fj}, 0 ≤ j ≤ k − 1,

and let λs be the number of s-points in Σ. It holds that γk−2 = n−d, γk−1 = n.
When C is Griesmer, the values γ0, γ1, . . . , γk−3 are also uniquely determined
([23]) as follows:

γj =

j∑
u=0

⌈ d

qk−1−u

⌉
for 0 ≤ j ≤ k − 1.(2)

Denote by ai the number of i-hyperplanes in Σ. Note that

ai = An−i/(q − 1) for 0 ≤ i ≤ n− d.(3)
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The list of ai’s is called the spectrum of C. Simple counting arguments yield
the following [21]:

γk−2∑
i=0

ai = θk−1,(4)

γk−2∑
i=1

iai = nθk−2,(5)

γk−2∑
i=2

i(i− 1)ai = n(n− 1)θk−3 + qk−2

γ0∑
s=2

s(s− 1)λs.(6)

Lemma 2.1. Let C be an [n, k, d]q code with multiset MC over Σ = PG(k −
1, q). Let ∆ be a t-flat in Σ with 1 ≤ t ≤ k−1 and let P be a point of Σ. Then,

(a) A code C′ with multiset MC′ = MC +∆ is q-divisible if and only if C
is q-divisible.

(b) A code C′ with multiset MC′ = MC + qP is q-divisible if and only if C
is q-divisible.

Proof. It follows from (3) that C is q-divisible if and only ifmC(H) ≡ n (mod q)
for any hyperplane H. Since every hyperplane meets ∆ in exactly θt−1 or θt
points, C is q-divisible if and only if mC′(H) ≡ n+ 1 ≡ n+ θt (mod q) for any
hyperplane H. Hence, (a) follows. The part (b) can be proved similarly. □

Lemma 2.2. Let C be an [n, k, d]q code with multiset MC over Σ = PG(k −
1, q). Assume d > qt and that MC contains a t-flat ∆ with 1 ≤ t ≤ k − 1. Let
C′ be an [n− θt, k, d

′]q code with multiset MC′ = MC −∆. Then,

(a) d′ ≥ d− qt.
(b) C′ is q-divisible if C is q-divisible.

Proof. See [26] for (a). The part (b) follows from Lemma 2.1(a). □

The method to construct new codes from a given [n, k, d]q code by deleting
the coordinates corresponding to some geometric object in PG(k−1, q) is called
geometric puncturing, see [24].

Lemma 2.3 (Cf. [5]). Let C1 be an [n1, k, d1]q code with a codeword of weight
d1 + m, m > 0 and let C2 be an [n2, k − 1, d2]q code. Then, there exists an
[n1 +n2, k, d]q code C with MC = MC1

+MC2
satisfying d = d1 +m if m < d2

and d = d1+d2 if m ≥ d2. Moreover, C is q-divisible if C1 and C2 are q-divisible.

Proof. Let C1 be an [n1, k, d1]q code with generator matrix G whose i-th row is
gi for 1 ≤ i ≤ k. Assume that a codeword a1g1+ · · ·+akgk with a1, . . . , ak ∈ Fq

has weight d1 + m, m > 0. Then, the hyperplane H defined by the equation
a1X1 + · · · + akXk = 0 has multiplicity n1 − d1 −m. Since C2 has dimension
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k − 1, one can take MC2
as a multiset on H. Then, the [n1 + n2, k, d]q code C

with MC = MC1
+MC2

satisfies

n1 + n2 − d = max{n1 − d1 −m+ n2, n1 − d1 + n2 − d2}
from (1), and our assertion follows. The divisibility is easily checked by (3). □

Let d be a positive integer to construct an [n, k, d]q code with dimension
k ≥ 3. Since [gq(k, sq

k−1), k, sqk−1]q codes (called s-fold simplex codes) exist
for any positive integer s, we assume that d is not divisible by qk−1. Then, d
can be uniquely expressed with s = ⌈d/qk−1⌉ as

d = sqk−1 −
r∑

j=1

quj−1,(7)

where r and uj ’s are integers satisfying

k − 1 ≥ u1 ≥ u2 ≥ · · · ≥ ur ≥ 1(8)

and

uj > uj+q−1 for 1 ≤ j ≤ r − q + 1.(9)

The condition (9) means that at most q − 1 of u1, . . . , ur can take any given
value. If r ≤ s and if ur ≥ 2, it is easy to construct Griesmer codes from
an s-fold simplex code by geometric puncturing and the resulting codes are
q-divisible since an s-fold simplex code is qk−1-divisible.

Theorem 2.4. There exists a q-divisible [gq(k, d), k, d]q code if r ≤ s and if q
divides d.

Assume r ≥ s+ 1 and let u =
∑s+1

i=1 ui. The following theorem was proved
by Belov et al. [2] for binary linear codes and by Hill [12] and Dodunekov [9]
for codes over Fq.

Theorem 2.5 ([12]). There exists a [gq(k, d), k, d]q code if u ≤ sk.

The positive integer d can also be uniquely expressed as

d = sqk−1 −
k−2∑
i=0

diq
i,(10)

where di’s are integers satisfying r =
∑

i di and

0 ≤ di ≤ q − 1 for all i.(11)

To construct a code of length sθk−1 −
∑k−2

i=0 diθi, we shall make a multiset

sPG(k − 1, q)−
k−2∑
i=0

(

di∑
j=1

∆ij)(12)

with di i-flats ∆ij for 0 ≤ i ≤ k − 2 and 1 ≤ j ≤ di if possible. Such a

construction of Griesmer codes is possible if u ≤ sk with u =
∑s+1

i=1 ui, where
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u1, . . . , ur satisfy (7)-(9), and the resulting codes are called the Griesmer codes
of Belov type [13]. In [17], a GPS code C (obtained by geometric puncturing
from an s-fold simplex code) is defined as a linear code whose multiset MC is
of the form (12) even for the case that u ≥ sk+1, and many optimal codes are
constructed as GPS. GPS codes are q-divisible if d is divided by q. Note that
Theorem 2.5 is proved by constructing GPS codes. Hence we get the following.

Corollary 2.6. There exists a q-divisible [gq(k, d), k, d]q code if u ≤ sk and
d0 = 0.

In the next section, we consider q-divisible linear codes C with multiset of
the form

MC = (A1 + · · ·+Aa)− (B1 + · · ·+Bb)

with geometric objects Ai and Bj , each of which could be the whole space
Σ = PG(k − 1, q), t-flats with t ≥ 1 or qP with some point P so that the code
C is q-divisible by Lemmas 2.1 and 2.2. We show that some q-divisible optimal
codes of dimension 4 can be constructed using hyperbolic quadrics in PG(3, q).

Lemma 2.7 (Cf. [16, 28]). Let C be an m-divisible [n, k, d]q code with q = ph,
p prime, whose spectrum is

(an−d−(w−1)m, an−d−(w−2)m, . . . , an−d−m, an−d) = (αw−1, αw−2, . . . , α1, α0),

where m = pr for some 1 ≤ r < h(k − 2) satisfying λ0 > 0 and

n >
dq

q − 1
.(13)

Then there exists a t-divisible [n∗, k, d∗]q code C∗ with t = qk−2/m, n∗ =∑w−1
j=0 jαj = ntq − d

mθk−1, d
∗ = ((n− d)q − n)t whose spectrum is

(an∗−d∗−γ0t, an∗−d∗−(γ0−1)t, . . . , an∗−d∗−t, an∗−d∗) = (λγ0 , λγ0−1, . . . , λ1, λ0).

C∗ is called a projective dual of C, see also [6] and [13].

Remark 1. The multisetMC∗ for the projective dual of C is given by considering
(n− d− jm)-hyperplanes as j-points in the dual space Σ∗ of Σ = PG(k− 1, q)
for 0 ≤ j ≤ w − 1 [28]. To guarantee that C∗ has dimension k, the condition⋂

H∈Fk−2, mC(H)<n−d

H = ∅(14)

was added in [16] to the original one in [28]. It follows from the proof of Lemma
5.1 in [28] that the maximum value of mC∗(H∗) with a hyperplane H∗ of Σ∗ is
nt − dθk−2/m when H∗ is a 0-point of Σ for C. Hence, we have dim C∗ = k if
nt− dθk−2/m < n∗, equivalently, if (13) holds.

The codes NOT satisfying (13) are very special. Indeed, the Plotkin bound
for codes with very large d requires the condition ‘n < dq/(q−1)’ [3,15]. Some
optimal codes satisfying ‘n = dq/(q− 1)’ can be constructed as Griesmer codes
of Belov type. For example, let MC = PG(3, q) − ℓ with a line ℓ. Then, C is
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Table 1. Multiset MC for the code C.

Lemma MC

3.2 2PG(3, q) + 2
∑2

i=1(li +mi)− (H1 +H2 +∆11 +∆12 +∆21 +∆22)

3.3 2PG(3, q) +
∑2

i=1(li +mi)− (H1 +∆11 +∆12 +∆21 +∆22)
3.4 2PG(3, q) + (l1 +m1 +m2)− (H1 +∆11 +∆12 +∆22)

a q-divisible [q3 + q2, 4, q3 − q]q code with spectrum (aq2 , aq2+q) = (q + 1, q2).
Obviously, the LHS of (14) is equal to ℓ and n(q − 1) = dq holds.

3. Construction of q-divisible codes using hyperbolic quadrics

Let Σ = PG(3, q) throughout this section. Assume q ≥ 7. In this section,
we construct some q-divisible codes, many of which are optimal. Let us take
four points Q0(0, 0, 0, 1), Q1(0, 0, 1, 0), Q2(0, 1, 0, 0), Q3(1, 0, 0, 0), six lines l1 =
⟨Q0, Q3⟩, l2 = ⟨Q1, Q2⟩ m1 = ⟨Q0, Q2⟩, m2 = ⟨Q1, Q3⟩, ℓ = ⟨Q2, Q3⟩, ℓ′ =
⟨Q0, Q1⟩ and four planes ∆ij = ⟨li,mj⟩ with 1 ≤ i ≤ j ≤ 2. We also take two
hyperbolic quadrics H1,H2 in Σ through the four lines l1, l2,m1,m2 as

H1 = V (x0x1 + x2x3), H2 = V (x0x1 + ϵx2x3),

where ϵ ∈ Fq with ϵ ̸= 0, 1. We recall that a hyperbolic quadric in PG(3, q)
consists of a set of q + 1 skew lines L, called regulus, and has another regulus
each line of which meets all lines of L, called the complementary regulus [14].

For d = q3 − 2q2 + q = q3 − q2 − (q − 1)q, we have u = 3 + 2 > sk = 4.
Hence, there exists no Griesmer code of Belov type although a Griesmer code
exists [22]. Such a Griesmer code can be constructed as a q-divisible code.

Lemma 3.1. There exists a q-divisible [n = q3 − q2 + 1, 4, d = q3 − 2q2 + q]q
code with spectrum (a1, aq2−2q+1, aq2−q+1) = (1, q2, q3 + q).

Proof. Let C be an [n, 4, d]q code with

MC = PG(3, q) + (l1 +m1)− (H1 +∆11).

Then, n = θ3+2θ1−(q+1)2−θ2 = q3−q2+1. It is easy to see thatm(∆11) = 1.
Let δ be a plane in Σ. If δ is a tangent plane not containing l1 nor m1, then
m(δ) = θ2 + 2− (2q + 1+ θ1) = q2 − 2q + 1. If δ is a tangent plane containing
l1 or m1, then m(δ) = θ2 + θ1 + 1 − (2q + 1 + θ1) = q2 − q + 1. If δ is not a
tangent plane, then m(δ) = θ2 + 2− (q + 1 + θ1) = q2 − q + 1. Hence, we get
the spectrum as stated and we have d = n− (q2 − q + 1) = q3 − 2q2 + q. □

The following Lemmas 3.2-3.4 can be proved similarly, see Table 1.

Lemma 3.2. There exists a q-divisible [2q3 − 4q2 + 2q + 4, 4, 2q3 − 6q2 + 6q]q
code C with spectrum (aq2−2q+4, a2q2−5q+4, a2q2−4q+4) = (4, 2q2 − 4q + 2, q3 −
q2 + 5q − 5).
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Lemma 3.3. There exists a q-divisible [2q3 − 3q2 + 1, 4, 2q3 − 5q2 + 3q]q code
C with spectrum (aq2−2q+1, a2q2−4q+1, a2q2−3q+1) = (4, q2 − 2q+1, q3 +3q− 4).

Lemma 3.4. There exists a q-divisible [2q3 − 2q2 + 1, 4, 2q3 − 4q2 + 2q]q code
C with spectrum (aq2−2q+1, aq2−q+1, a2q2−3q+1, a2q2−2q+1) = (1, 2, q2 − q, q3 +
2q − 2).

Note that the code C is Griesmer in Lemmas 3.3, 3.4 and that the code in
Lemma 3.2 satisfies n = gq(4, d) + 1.

Let C be the Griesmer [2q3 − 3q2 + 1, 4, 2q3 − 5q2 + 3q]q code in Lemma
3.3. Note that the set of 0-points is ℓ ∪ ℓ′ ∪ l1 ∪ l2 ∪ m1 ∪ m2. Assume that
L = {l1, . . . , lq+1} and M = {m1, . . . ,mq+1} are reguli of H1. Then, for
3 ≤ j ≤ q + 1, the tangent plane ∆3j = ⟨l3,mj⟩ contains six 0-points: P31 =
l3 ∩m1 and P32 = l3 ∩m2 on l3, P1j = l1 ∩mj and P2j = l2 ∩mj on mj and
⟨P31, P1j⟩ ∩ ⟨P32, P2j⟩, ⟨P31, P2j⟩ ∩ ⟨P32, P1j⟩. Since q ≥ 7, one can find a line
l3j on the plane ∆3j through the point l3 ∩mj which has no 0-point. Hence,
the multiset MC contains q − 1 skew lines l3j with 3 ≤ j ≤ q + 1. It follows
from Lemma 2.2 that there exists a q-divisible [n = 2q3 − 3q2 + 1− tθ1, 4, d =
2q3 − 5q2 + 3q − tq]q code for 1 ≤ t ≤ q − 1, which are Griesmer for t = 1, 2
and satisfy n = gq(4, d) + 1 for 3 ≤ t ≤ q− 1. Similarly, we can prove that MC
for the code in Lemma 3.4 contains q − 1 skew lines, giving the following.

Lemma 3.5. There exists a q-divisible [gq(4, d), 4, d]q code for d = 2q3−4q2+q,
2q3 − 5q2 + 2q, 2q3 − 5q2 + q and a q-divisible [gq(4, d) + 1, 4, d]q code for
d = 2q3 − 5q2 − αq with 0 ≤ α ≤ q − 4 and for d = 2q3 − 4q2 − βq with
0 ≤ β ≤ q − 3.

Remark 2. It is known that a q-divisible [q2, 3, q2 − q]q code C′ with spectrum
(a0, aq) = (1, q2+ q) exists (which can be obtained as a projection of an elliptic
quadric E3 from a point P ∈ E3 onto a plane δ not through P ). Adding MC′

to a (q2 − 2q + 1)-plane for the code C in Lemma 3.3, one can construct a
q-divisible Griesmer [2q3 − 2q2 + 1, 4, 2q3 − 4q2 + 2q]q code by Lemma 2.3.

Lemma 3.6. There exists a [gq(4, d
∗)+1 = q3−2q2+q+3, 4, d∗ = q3−3q2+3q]q

code C∗ with spectrum (a3, aq2−3q+3, aq2−2q+3) = (1, 2q2 − q − 1, q3 − q2 + 2q).

Proof. Let C be an [n, 4, d]q code with

MC = H1 +H2 + ℓ+ qQ0 − (2l1 + l2 + 2m1 +m2).

Then, n = 2(q + 1)2 + θ1 + q − 6θ1 = 2q2 − 3. One can check that m(∆11) =
2(2q+1)+ θ1+ q− (4θ1+2) = 2q− 3, m(∆12) = m(∆21) = 2(2q+1)+1+ q−
(3θ1 + 3) = 2q− 3 and m(∆22) = 2(2q+ 1) + θ1 − (2θ1 + 4) = 3q− 3. Let δ be
a plane in Σ. If δ is a tangent plane not containing any of l1, l2,m1,m2, then
m(δ) = 2q+1+ θ1+1−6 = 3q−3. If δ is a tangent plane containing l1 or m1,
then m(δ) = 2(2q + 1) + 1+ q − (2θ1 + 4) = 3q − 3. If δ is not a tangent plane
containing l2 or m2, then m(δ) = 2(2q + 1) + 1− (θ1 + 5) = 3q − 3. If δ is not
a tangent plane containing ℓ, then m(δ) = 2θ1 + θ1 − 6 = 3q − 3. If δ is not a
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tangent plane not containing ℓ nor Q0, then m(δ) = 2θ1 + 1− 6 = 2q − 3. If δ
is not a tangent plane not containing Q0, then m(δ) = 2θ1+1+ q−6 = 3q−3.
Hence, the spectrum of C is (a2q−3, a3q−3) = (q3 − 2q2 + q + 3, 3q2 − 2) since
a3q−3 = 1+2(q−1)2+4(q−1)+q−1+θ2−3−2(q−1) = 3q2−2, and we have
d = n− (3q−3) = 2q2−3q. Hence, C is q-divisible. Let C∗ be a projective dual
of C with parameters [n∗, 4, d∗]q. Then, we have the spectrum of C∗ as stated
since m(Q) = 2 + q − 4 = q − 2 and m(P ) = 0 or 1 for any other point P . □

In the next section, we show that a [gq(4, d), 4, d = q3− 3q2+3q]q code does
not exist for 7 ≤ q ≤ 13. Hence, the code C∗ in Lemma 3.6 is optimal for
7 ≤ q ≤ 13. But the optimality for q ≥ 16 is still open.

We note that the optimality of the following code is unknown for q ≥ 7.

Lemma 3.7. There exists a [gq(4, d
∗) + 1 = 2q3 − 3q2 + q + 3, 4, d∗ = 2q3 −

5q2 + 4q]q code C∗ with spectrum (aq2−2q+3, aq2−q+3, a2q2−4q+3, a2q2−3q+3) =
(2, 1, 2q2 − 2q, q3 − q2 + 3q − 2).

Proof. Let C be an [n, 4, d]q code with

MC = H1 +H2 + l + q(Q0 +Q1 +Q3)− (2l1 + 2l2 +m1 + 2m2).

Then, n = 2(q+1)2+θ1+3q−7θ1 = 2q2+q−4. One can check that m(∆11) =
2(2q+1)+θ1+2q−(3θ1+4) = 4q−4 andm(∆12) = 2(2q+1)+1+3q−(4θ1+3) =
3q − 4 = m(∆21) = m(∆22). Let δ be a plane in Σ. If δ is a tangent plane not
containing any of l1, l2,m1,m2, then m(δ) = 2q+1+θ1+1−7 = 3q−4. If δ is a
tangent plane containing l1 or m2, then m(δ) = 2(2q+1)+1+2q− (2θ1+5) =
4q − 4. If δ is not a tangent plane and if δ contains none of l1, l2,m1,m2, then
m(δ) = 2(2q+1)+1+2q−(2θ1+5) = 4q−4. If δ is a tangent plane containing
l2, then m(δ) = 2(2q + 1) + 1 + q − (2θ1 + 5) = 3q − 4. If δ is a tangent
plane containing m1, then m(δ) = 2(2q + 1) + 1 + q − (θ1 + 6) = 4q − 4. If
δ is not a tangent plane and if δ contains none of l1, l2,m1,m2, then m(δ) =
2θ1 + θ1 + q − 7 = 4q − 4. If δ is not a tangent plane containing ℓ or ℓ′, then
m(δ) = 2θ1 + 1 − 7 = 2q − 4. If δ is not a tangent plane containing none of
Q0, Q1, Q3, then m(δ) = 2θ1 + 1 + q − 7 = 3q − 4. If δ is not a tangent plane
not containing Q2, then m(δ) = 2θ1+1−7 = 2q−4. Hence, the spectrum of C
is (a2q−4, a3q−4, a4q−4) = (q3 − 4q2 +5q− 2, 5q2 − 9q+7, 1+ 5(q− 1) = 5q− 4)
since a3q−4 = 3+2(q−1)2+q−1+3(θ2−3−3(q−1)) = 5q2−4q+7. And, we
have d = n− (4q− 4) = 2q2 − 3q. Thus, C is q-divisible. Let C∗ be a projective
dual of C with parameters [n∗, 4, d∗]q. Then, we have the spectrum of C∗ as
stated since m(Q0) = m(Q3) = q − 1, m(Q1) = q − 2 and m(P ) = 0 or 1 for
any other point P and since a2q2−4q+3 = n− 2(q − 1)− (q − 2). □

4. Optimality of the code in Lemma 3.6

In this section, we prove the non-existence of [gq(4, d), 4, d]q codes for d =
q3 − 3q2 + 3q for 3 ≤ q ≤ 13, which gives Theorem 1.4.
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Let C be an [n, 4, d]q code with d = q3−3q2+3q, n = gq(4, d) = q3−2q2+q+2,
q ≥ 3. Then, C is projective from (2), and the set of 1-points in an (n−d)-plane
forms a (q2 − 2q + 2, q − 1)-arc. But such an arc does not exist for 3 ≤ q ≤ 8
(see [1]), a contradiction. For q = 9, C is a [578, 4, 513]9 code, which does not
exist, see [20].

Now, assume q = 11 or 13. Since q is prime, C is q-divisible by the following.

Theorem 4.1 ([29]). Let C be a Griesmer [n, k, d]p code with a prime p. If pe

divides d, then C is pe-divisible.

It follows from (3) that an i-plane satisfies i ≡ 2 (mod q). Assume that
an i-plane δ contains an r-line ℓ. Since γ2 = n − d, considering the planes
through ℓ, we get n ≤ (n− d− r)q+ i. Thus, an i-plane gives an (i, r)-arc with
r ≤ (i+q(n−d)−n)/q. Hence, from the possible sizes of arcs [1], we have ai = 0
for all i ̸∈ {90, 101} when q = 11 and that ai = 0 for all i ̸∈ {119, 132, 145} when
q = 13. For q = 11, we obtain (a90, a101) = (118, 1346) from (4) and (5), which
contradicts (6). For q = 13, we obtain (a122, a132, a145) = (122,−78, 2336) from
the three equalities (4)-(6), a contradiction again. Hence, we get the following.

Lemma 4.2. There exists no [gq(4, d), 4, d]q codes for d = q3 − 3q2 + 3q with
3 ≤ q ≤ 13.

Remark 3. The complement of a (q2− 2q+2, q− 1)-arc in PG(2, q) is a double
blocking set of size 3q − 1, which does exist for q = 13, 16, 19, 25, 27, 31, 37, 43
[8]. But the existence of such an arc is still unknown for q = 11, 17 [1].

5. Construction of new linear codes over Fq with q = 7, 8

In this section, we prove Theorems 1.5 and 1.6. We first give a method to
construct good codes by some orbits of a given projectivity in PG(k−1, q). For
a non-zero element α ∈ Fq, let R = Fq[x]/(x

N − α) be the ring of polynomials
over Fq modulo xN − α. We associate the vector (a0, a1, . . . , aN−1) ∈ FN

q with

the polynomial a(x) =
∑N−1

i=0 aix
i ∈ R. For g = (g1(x), . . . , gm(x)) ∈ Rm,

Cg = {(r(x)g1(x), . . . , r(x)gm(x)) | r(x) ∈ R}

is called the 1-generator quasi-twisted (QT) code with generator g. Cg is usually
called quasi-cyclic (QC) when α = 1. When m = 1, Cg is called α-cyclic or
pseudo-cyclic (PC) or constacyclic. All of these codes are generalizations of

cyclic codes (α = 1, m = 1). Take a monic polynomial g(x) = xk −
∑k−1

i=0 aix
i

in Fq[x] dividing xN − α with non-zero α ∈ Fq, and let T be the companion
matrix of g(x). Let τ be the projectivity of PG(k−1, q) defined by T . We denote
by [gn] or by [a0a1 · · · ank−1] the k × n matrix [P, TP, T 2P, . . . , Tn−1P ], where

P is the column vector (1, 0, 0, . . . , 0)T (hT stands for the transpose of a row
vector h). Then [gN ] generates an α−1-cyclic code. Hence one can construct a

cyclic or PC code from an orbit of τ . For non-zero vectors PT
2 , . . . , PT

m ∈ Fk
q ,
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we denote the matrix

[P, TP, T 2P, . . . , Tn1−1P ;P2, TP2, . . . , T
n2−1P2; · · · ;Pm, TPm, . . . , Tnm−1Pm]

by [gn1 ] + Pn2
2 + · · ·+ Pnm

m . P
nj

j is denoted by Pj if nj = 1. Then, the matrix

[gN ] + PN
2 + · · · + PN

m defined from m orbits of τ of length N generates a
QC or QT code, see [27]. It is shown in [27] that many good codes can be
constructed from orbits of projectivities. It sometimes happens that QC or
QT codes are divisible or can be extended to divisible codes. For example,
Let g(x) = x4 − 4x3 − 2x2 − x − 1 ∈ F7[x] and let τ be the projectivity of
PG(k − 1, q) defined by the companion matrix of g(x). Let ct be the number
of orbits of τ with length t. Then, we have (c1, c2, c4, c6, c12) = (2, 4, 12, 1, 28).
By the search of various combinations of orbits for 7-divisible codes using a
computer, we have found a [182, 4, 154]7 code as in Lemma 5.1. In this section,
the weight distribution with (A0, Ad, . . .) = (1, α, . . .) is expressed as 01dα · · · .

Lemma 5.1. There exists a 7-divisible [g7(4, d) + 1, 4, d]7 code for d = 154.

Proof. Let C be the code with generator matrix

[112412] + 001112 + 004112 + 005112 + 040112 + 030112 + 055112

+ 066112 + 041112 + 036112 + 056112 + 035112 + 016112 + 400112

+ 01514 + 10514 + 40212 + 51012 + 5261 + 5261.

Then C is a 7-divisible [182, 4, 154]7 code with weight distribution

01154174616160016854. □

Lemma 5.2. There exists a 7-divisible [g7(4, d) + 1, 4, d]7 code for d = 105.

Proof. Let C be the code with generator matrix

[13048] + 00018 + 00418 + 04418 + 05518 + 06618 + 04118 + 05318 + 05618

+ 01518 + 02518 + 50518 + 20618 + 11218 + 66218 + 06014 + 6521.

Then C is a [125, 4, 105]7 code with weight distribution

01105169811265411948. □

Note that Griesmer codes over F7 are 7-divisible by Theorem 4.1.

Lemma 5.3. There exists a [g7(4, d), 4, d]7 code for d = 119.

Proof. Let C be the code with generator matrix

[32466] + 00216 + 00616 + 02016 + 02016 + 60616 + 60616 + 10216

+ 10216 + 1141 + 1141 + 3521 + 6251 + 6251 + 2561.

Then C is a 7-divisible [60, 4, 49]7 code with weight distribution

0149156056840.
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Applying Lemma 2.7, as the projective dual of C, one can get a [140, 4, 119]7
code C∗ with weight distribution

011192160126120133120. □

Lemma 5.4. There exists a 7-divisible [g7(4, d) + 1, 4, d]7 code for d = 126.

Proof. Let C be the code with generator matrix

[11066] + 00416 + 00416 + 01016 + 04016 + 04016 + 02216 + 05316

+ 05416 + 01616 + 04316 + 05216 + 40516 + 24616 + 26616 + 24313

+ 24313 + 6001 + 1221 + 1221 + 2651 + 2651.

Then C is a 7-divisible [101, 4, 84]7 code with weight distribution

01841554917989848.

Applying Lemma 2.7, as the projective dual of C, one can get a [149, 4, 126]7
code C∗ with weight distribution

011261896133402140102. □

Lemma 5.5. There exists a 7-divisible [g7(4, d) + 1, 4, d]7 code for d = 133.

Proof. Let C be the code with generator matrix

[11066] + 00416 + 00416 + 00516 + 04016 + 05316 + 01316

+ 03216 + 06316 + 01616 + 10216 + 36616 + 45416 + 45416

+ 06013 + 20613 + 1221 + 1221 + 2651.

Then C is a 7-divisible [93, 4, 77]7 code with weight distribution

0177146484930916.

Applying Lemma 2.7, as the projective dual of C, one can get a [157, 4, 133]7
code C∗ with weight distribution

01133192014040214778. □

Lemma 5.6. There exist 7-divisible [g7(4, d), 4, d]7 codes for d = 406, 413.

Proof. Let C be the code with generator matrix

[32466] + 00216 + 00616 + 02016 + 02016 + 60616 + 60616 + 10216

+ 10216 + 9P + 3521 + 6251 + 6251 + 2561,

where P = 1141. Then C is a 7-divisible [67, 4, 49]7 code with weight distribu-
tion

014930056130263798.

Applying Lemma 2.7, as the projective dual of C, one can get a [483, 4, 413]7
code C∗ with weight distribution

0141321604201204271144766.
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Since the multiset MC∗ contains a line ⟨0001, 0110⟩, we can get a 7-divisible
[475, 4, 406]7 code by Lemma 2.2. □

Let F8 = {0, 1, α, α2, . . . , α6}, with α3 = α + 1. For simplicity, we denote
α, α2, . . . , α6 by 2, 3, . . . , 7 so that F8 = {0, 1, 2, 3, . . . , 7}.

Lemma 5.7. There exists an 8-divisible [g8(4, d) + 1, 4, d]8 code for d = 336.

Proof. Let C be the code with generator matrix

[104014] + 110014 + 130014 + 140014 + 150014 + 160014

+ 170014 + 166014 + 133014 + 16642 + 6P,

where P = 1267. Then C is a 8-divisible [134, 4, 112]8 code with weight distri-
bution

01112140012026881287.

Applying Lemma 2.7, as the projective dual of C, one can get a [386, 4, 336]8
code C∗ with weight distribution

0133631923448963847. □

Lemma 5.8. There exists an 8-divisible [g8(4, d) + 1, 4, d]8 code for d = 352.

Proof. Let C be the code with generator matrix

[11016] + 12306 + 14306 + 14546 + 15006 + 15046 + 15506

+ 15536 + 17606 + 16652 + 1001 + 1001.

Then C is a 4-divisible [58, 4, 48]8 code with weight distribution

0148158952218456322.

Applying Lemma 2.7, as the projective dual of C, one can get a [404, 4, 352]8
code C∗ with weight distribution

0135236963683923847. □

Lemma 5.9. There exist 8-divisible [g8(4, d), 4, d]8 codes for d = 648, 656,
664, 672.

Proof. Let C be the code with generator matrix

[11107] + 00117 + 04717 + 06417 + 07617 + 2571 + 5341 + 3261.

Then C is a 4-divisible [38, 4, 28]8 code with weight distribution

012856322695361344.

Applying Lemma 2.7, as the projective dual of C, one can get a [769, 4, 672]8
code C∗ with weight distribution

016723829688266.

Since the multiset MC∗ contains three skew lines

⟨0100, 1010⟩, ⟨1200, 1001⟩, ⟨1300, 1101⟩,
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we can get [760, 4, 664]8, [751, 4, 656]8, [742, 4, 648]8 codes by Lemma 2.2. □

Lemma 5.10. There exists a [g8(4, d) + 1, 4, d]8 code for d = 166.

Proof. Let C1 be the 8-divisible [742, 4, 648]8 code obtained in Lemma 5.9.
Applying Lemma 2.7, as the projective dual of C1, one can get a 8-divisible
[103, 4, 80]8 code C∗

1 with weight distribution

0180224882548961323.

So, from (3), there are 189 7-planes in PG(3, 8) for C∗
1 . Equivalently, there are

189 2-points in PG(3, 8) for C1. Let MC2
be the set of 2-points for C1. Then,

C2 is a [189, 4, 163]8 code with weight distribution

01163756164107116515821662941671261779118015418121.

C2 can be extended to a [192, 4, 166]8 code with weight distribution

0116611761671176168147718098183168

by adding the three points 1407, 1502, 1702 to MC2
. □

Now, Theorems 1.5 and 1.6 follow from Lemmas 5.1-5.10 since an [n, k, d]q
code yields an [n− 1, k, d− 1]q code by puncturing.
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