• Title/Summary/Keyword: D-optimal Design

Search Result 1,314, Processing Time 0.031 seconds

A Study on the Basic Shape of an MF Evaporator (MF증발기 기초 형상 설계에 관한 연구)

  • Park, Yong-Seok;Seong, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.39-44
    • /
    • 2019
  • The evaporator is a key driver of an air conditioning system's efficiency. In this study, we study methods of maximizing the efficiency of a Massey Ferguson (MF) evaporator by measuring how the cooling performance of different shapes vary with temperature. We varied the tube insertion depth as well as the shape of the evaporator's header and tube. When we compare header shapes of "D", "Ellipse", and "Quadrangle" types, we find that the elliptical header creates the smallest pressure loss and the highest temperature difference. Between tube shapes of "Rectangular", "Projection", and "Circular" types, the "Projection" type tube creates the most temperature difference. We also investigated the depth of tube insertion in the header and find that tube insertion of 5 - 10 mm is feasible; we selected the depths of 5, 7, and 10 mm since they corresponded to approximately 30%, 50%, and 70% of the total width of the header. The tube insertion test demonstrated that a tube insertion depth of 7 mm creates the least pressure loss and the highest temperature difference. In conclusion, the optimal evaporator design uses an "Ellipse" type header, "Projection" type tube, and a tube insertion depth between 30 and 50% of the header width.

Discrete Element Method for Defining the Dynamic Behavior and Abrasion of Gravel in Mixer Trucks during Mixing and Discharging (이산 요소법을 이용한 골재 입자의 혼합 및 배출 시 골재 거동 및 강판 마모에 관한 연구)

  • Ryu, Seung-Hun;Woo, Ho-Kil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.34-41
    • /
    • 2020
  • Ready-mixed concrete is unconsolidated concrete typically transported to construction sites by using mixer trucks. A proper rotation of concrete is necessary to prevent its solidification in mixer trucks during transport: in accordance with the manufacturing method and quality inspection prescribed in KSF4009, this movement is maintained after the manufacturing of concrete in professional production plants and the addition of water, solid materials, and admixtures. Unfortunately, mixer truck parts wear out over long periods of time. In order to improve the wear resistance of the main part of mixer trucks, we used a steel plate with good wear resistance or partially added a reinforcement plate. In this study, we first tested the properties of concrete (as required for the DEM), and then carried out mixing and discharge simulations to define the actual operating conditions of mixer trucks. For each condition, we calculated the amount and location of wear. The reliability of our results was finally verified by comparing them with the measurement values. Overall, this study provided basic data for an optimal design of mixer trucks: one that would reduce the vehicles' weight and production costs.

A study on the technology of in-mold punching process for integrated hole piercing of plastic hollow parts (플라스틱 중공부품의 일체화 성형을 위한 인몰드 펀칭 공정기술에 관한 연구)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • A study on in-mold punching technology for hole piercing during molding of hollow plastic parts was conducted. Considering the non-linearity of the HDPE plastic material, mechanical properties were obtained according to the change in temperature and load speed. A standard specimen for the in-mold punching test was designed to implement the in-mold punching process, and the specimen was obtained through injection molding. In order to analyze the influence of process variables during in-mold punching, an in-mold punching mold capable of controlling variables such as temperature and support pressure of the specimen was designed and manufactured. Mold heating characteristics were confirmed through finite element analysis, and punching simulations for changes in process conditions were performed to analyze punching characteristics and reflected in the experiment. Through simulations and experiments, it was found that the heating temperature, punch shape, punching speed, and pressure of the back side of the specimen were very important during in-mold punching of HDPE materials, and optimal conditions were acquired within a given range.

Multi-objective Optimization of Pedestrian Wind Comfort and Natural Ventilation in a Residential Area

  • H.Y. Peng;S.F. Dai;D. Hu;H.J. Liu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.315-320
    • /
    • 2022
  • With the rapid development of urbanization the problems of pedestrian-level wind comfort and natural ventilation of tall buildings are becoming increasingly prominent. The velocity at the pedestrian level ($\overline{MVR}$) and variation of wind pressure coefficients $\overline{{\Delta}C_p}$ between windward and leeward surfaces of tall buildings were investigated systematically through numerical simulations. The examined parameters included building density ρ, height ratio of building αH, width ratio of building αB, and wind direction θ. The linear and quadratic regression analyses of $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were conducted. The quadratic regression had better performance in predicting $\overline{MVR}$ and $\overline{{\Delta}C_p}$ than the linear regression. $\overline{MVR}$ and $\overline{{\Delta}C_p}$ were optimized by the NSGA-II algorithm. The LINMAP and TOPSIS decision-making methods demonstrated better capability than the Shannon's entropy approach. The final optimal design parameters of buildings were ρ = 20%, αH = 4.5, and αB = 1, and the wind direction was θ = 10°. The proposed method could be used for the optimization of pedestrian-level wind comfort and natural ventilation in a residential area.

A Study on Improving Formability of Stamping Processes with Segmented Blank Holders using Artificial Neural Network and Genetic Algorithm (인공신경망과 유전 알고리즘을 이용한 분할 블랭크 홀더 스탬핑 공정의 성형성 향상에 관한 연구)

  • G. P. Kim;S. D., Goo;M. S. Kim;G. M. Han;S. W. Jun;J. S. Lee;J. H. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.276-286
    • /
    • 2023
  • The field of sheet metal forming using press technology has become essential in modern mass production systems. Draw bead is often used to enhance formability. However, optimal draw bead design often requires excessive time and cost due to iterative experimentation and sometimes results in some defects. Given these challenges, there is a need to enhance formability by introducing segmented blank holders without draw beads. In this paper, the feasibility of a localized holding strategy using segmented blank holders is evaluated without the use of draw beads. The possibility for improving the formability was evaluated by utilizing a combination of the forming limit diagram and the wrinkle pattern-based defect indicators. Artificial neural networks were used for predicting defect indicators corresponding to arbitrary input holding forces and the NSGA-II optimization algorithm is used to find optimum blank holder forces yielding better defect indicators than the original process with drawbeads. Using optimum holding forces obtained from the proposed procedure, the stamping process with the segmented blank holders can yield better formability than the conventional process with drawbeads.

Analysis of Flow Performance According to Actuator Geometry of Receptacle for Hydrogen Charging System with Filter Applied (필터가 장착된 수소충전시스템용 리셉터클의 작동부 형상에 따른 유동 성능 분석)

  • JU HWAN CHOI; GU HO KIM;JAE KWANG KIM;YONG KI KIM;HYUN KYU SUH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • The purpose of this study was to propose a design that shows optimal performance by changing the geometry of the internal flow path of the receptacle in order to prevent the decrease in flow rate and differential pressure performance due to the application of the receptacle in the hydrogen charging system. To achieve this, 3D computational fluid dynamics simulation was performed for the receptacle, according to the geometry of the flow path inside the receptacle. The pressure results at the inlet and outlet were measured the same as both of N and H2 in the experiment, and the flow rate of H2 was 3.75 times higher than that of N2. In addition, since the flow performance of the receptacle improved under conditions where the flow path was widened, it was confirmed that reducing the diameter of the poppet and the width of the guide are advantageous for improving performance.

Assessing the long-term durability and degradation of rocks under freezing-thawing cycles

  • Seyed Zanyar Seyed Mousavi;Mohammad Rezaei
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.51-67
    • /
    • 2023
  • In this research, the degradation rate of physical properties of the Angouran pit bedrock (calc-schist) is first investigated under the specific numbers of freeze-thaw (F-T) cycles. Then, the durability of calc-schist specimens against the F-T cycle number (N) is examined considering the mechanical parameters, and using the decay function and half-time techniques. For this purpose, point load strength (IS(50)), second durability index (Id2), Brazilian tensile strength (BTS), and compressive (VP) and shear (VS) wave velocities of calc-schist specimens are measured after 0, 7, 15, 40, and 75 N. For comparing the degradation rate of mechanical properties of available rock types on the Angouran mine walls, these tests are also carried out on the limestone and amphibolite schist specimens beside the calc-schist. According to test results, the exponential regression models are developed between the mechanical parameters of rock specimen's and N variable. Also, the long-term durability of each rock type versus N is studied using the decay function and half-time techniques. Results indicated that the degradation rate differs for the above rock types in which amphibolite schist and calc-schist specimens have the highest and least resistance against the N, respectively. The obtained results from this study can play a key role in the optimal design of the mine's final walls.

Response Surface Methodology for Optimization of the Removal of Organic Matters in Eutrophic Waters by Korean Freshwater Bivalves (반응표면분석을 이용한 패류의 부영양수 유기물 제어능 연구)

  • Choi, Hwan-Seok;Nam, Gwi-Sook;Kim, Min-Seob;Shin, Hyun-Jae;Park, Myung-Hwan;Hwang, Soon-Jin;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.312-318
    • /
    • 2014
  • This study was conducted to establish models of filtrating rate and production of feces of a native freshwater bivalve, Anodonta woodiana, on removal organic matters in eutrophic waters. Among the applied shell size (4.3~15.5 cm), the filtrating rate and production of feces of Anodonta woodiana was $0.08{\sim}0.86L\;g^{-1}\;h^{-1}$ (average $0.24L\;g^{-1}\;h^{-1}$), $0.00{\sim}11.10mg\;g^{-1}\;h^{-1}$ (average $0.94mg\;g^{-1}\;h^{-1}$), respectively. In two different water current (high $48Lh^{-1}$, low $24Lh^{-1}$), the filtrating rate of Chl-a was $0.02{\sim}0.10L\;g^{-1}\;d^{-1}$ (average $0.05L\;g^{-1}\;d^{-1}$), $0.02{\sim}0.11L\;g^{-1}\;d^{-1}$ (average $0.07L\;g^{-1}\;d^{-1}$) and the removal rate was 65.4%, 82.1%, respectively. Response surface methodology, with a central composite design comprising 3 levels and 2 variables, was used to identify the optimal removal condition of shell length, water current and filtrating rate or feces production by bivalves. The optimum removal conditions were found that had optimized $6.21L\;mussel^{-1}\;d^{-1}$ at shell length 14.3~15.6 and water current $22{\sim}30Lh^{-1}$. The optimal conditions of production of feces ($4.2mg\;g^{-1}\;d^{-1}$) by freshwater mussels were shell length 14.3~16.3 cm and water current $36{\sim}44Lh^{-1}$.

Optimization of Ingredients for the Preparation of Chinese Quince (Chaenomelis sinensis) Jam by Mixture Design (모과잼 제조시 혼합물 실험계획법에 의한 재료 혼합비율의 최적화)

  • Lee, Eun-Young;Jang, Myung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.935-945
    • /
    • 2009
  • This study was performed to find the optimum ratio of ingredients in the Chinese quince jam. The experiment was designed according to the D-optimal design of mixture design, which included 14 experimental points with 4 replicates for three independent variables (Chinese quince paste $45{\sim}60%$, pectin $1.5{\sim}4.5%$, sugar $45.5{\sim}63.5%$). A mathematical analytical tool was employed for the optimization of typical ingredients. The canonical form and trace plot showed the influence of each ingredient in the mixture against final product. By use of F-test, sweetness, pH, L, b, ${\Delta}E$, and firmness were expressed by a linear model, while the spreadmeter value, a, and sensory characteristics (appearance, color, smell, taste, and overall acceptability) were by a quadratic model. The optimum formulations by numerical and graphical method were similar: Chinese quince paste 54.48%, pectin 2.45%, and sugar 53.07%. Optimum ingredient formulation is expected to improve use of Chinese quince and contribute to commercialization of high quality Chinese quince jam.

Long Term Operation of Microfiltration Membrane Pilot Plant for Drinking Water Treatment (정수처리를 위한 정밀여과막 모형플랜트의 장기운전 특성)

  • Kim, Chung H.;Lee, Byung G.;Lim, Jae L.;Kim, Seong S.;Lee, Kyeong H.;Chae, Seon H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.493-501
    • /
    • 2007
  • The membrane pilot plant has being operated in the Hyeondo pumping station to find the optimal operation technique of Gong-Ju membrane water treatment plant (WTP) which is constructing in $250m^3/d$ scale. The pilot plant was consisted of two trains which can treat $30,000m^3/d$ per train. First train was operated for one year under the condition of flux $1m^3/m^2{\cdot}d$ while the effects of flux variation and addition of powdered activated carbon(PAC) were evaluated in second train. The turbidity of membrane product water of first train which is operated on Flux $1m^3/m^2{\cdot}d$ was always below 0.05 NTU regardless of raw water turbidity. And also, the trance-membrane pressure(TMP) was maintained at $0.3{\sim}0.5kgf/cm^2$ for about 9 months and increased rapidly to $1.8kgf/cm^2$ which is maximum operating TMP. However, TMP was rapidly increased to $1.8kgf/cm^2$ within 2 months as flux was increased from 1 to $2m^3/m^2{\cdot}d$, especially, within 10 days under high turbidity(30~50NTU). This reault means that if Gongju membrane WTP is operated in flux $1m^3/m^2{\cdot}d$, chemical cleaning period can be maintained over 6 months. Only 10% of dissolved organic carbon (DOC) was removed in membrane process while the removal efficiencies of manganese and iron were 60% and 77% respectively. However, because only solid manganese and iron were removed in membrane process, an additional process for treating soluble manganese is required if souble manganese is high in raw water. 70% of 70ng/L 2-MIB which is causing taste & odor was removed in powdered activated carbon (PAC) tank with 50mg/L PAC which is design concentration of Gongju WTP. In addition, TMP was reduced with addition of 50mg/L PAC regardless of flux. Because TMP was not influenced even if 100mg/L PAC was added, the high taste and odor problem can be controled by additional injection of PAC.