• Title/Summary/Keyword: D-LiDAR

Search Result 310, Processing Time 0.037 seconds

An Automatic Extraction Algorithm of Structure Boundary from Terrestrial LIDAR Data (지상라이다 데이터를 이용한 구조물 윤곽선 자동 추출 알고리즘 연구)

  • Roh, Yi-Ju;Kim, Nam-Woon;Yun, Kee-Bang;Jung, Kyeong-Hoon;Kang, Dong-Wook;Kim, Ki-Doo
    • 전자공학회논문지 IE
    • /
    • v.46 no.1
    • /
    • pp.7-15
    • /
    • 2009
  • In this paper, automatic structure boundary extraction is proposed using terrestrial LIDAR (Light Detection And Ranging) in 3-dimensional data. This paper describes an algorithm which does not use pictures and pre-processing. In this algorithm, an efficient decimation method is proposed, considering the size of object, the amount of LIDAR data, etc. From these decimated data, object points and non-object points are distinguished using distance information which is a major features of LIDAR. After that, large and small values are extracted using local variations, which can be candidate for boundary. Finally, a boundary line is drawn based on the boundary point candidates. In this way, the approximate boundary of the object is extracted.

A Study for Forest Research using Airborne Laser Scanning (항공레이저측량을 이용한 산림조사 방법에 관한 연구)

  • Kim, Eun-Young;Wie, Gwang-Jae;Cho, Heung-Muk;Yang, In-Tae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.299-304
    • /
    • 2010
  • Depending on the progress of the surveying and information processing technology, the rapidly developing field of spatial information and the 3D real world spatial information for a variety of content on the computer was able to easily access. In this research, to study on the spot or to use aerial photographs to measure trees of the acquired data, calculate the trees height, forest area and capacity, determine the distribution of the density of acquired points in the forest and analyze accurate and objective information was acquired. The United States, Canada and so on through the capacity of trees biomass, forest resource analysis, time series monitoring, wildfire behavior modeling and applied research and has been declared. During worldwide is increasing interest in forest resources. In nationally, extensive research and analysis of the forest consists of the correct management and protection of forest resources to be effective.

Comparison and Evaluation on DEM Error by the Resolution of Airborne Laser Scanning Data (항공레이저 측량 자료의 해상도에 따른 DEM 오차 비교평가 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Chae, Hyo-Seok;Shin, Young-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.33-42
    • /
    • 2003
  • As airborne laser scanning technique is developed with high vertical accuracy recently, there come many studies on DEM(digital elevation model creation, building extraction, flood risk mapping and 3D virtual city modeling. This study applied point comparative method, contour comparative method and digital map with scale 1/5,000 to calculate RMSE of DEM in according to resolution that was constructed using rawdata being acquired by airborne laser scanning. As a result, point comparative method showed lower DEM standard error than contour comparative method, it is a reason that contour comparative method was not carried out detailed grid calculation for point comparative method. Also, digital map with scale 1/5,000 showed higher DEM standard error than point comparative method and contour comparative method in below 25.4m that is average horizontal distance among contour line, and showed similar result with contour comparative method in over 25.4m.

  • PDF

High Resolution and Large Scale Flood Modeling using 2D Finite Volume Model (2차원 유한체적모형을 적용한 고해상도 대규모 유역 홍수모델링)

  • Kim, Byunghyun;Kim, Hyun Il;Han, Kun Yeun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.413-413
    • /
    • 2020
  • Godunov형 모형을 이용한 홍수모델링에서는 일반적으로 구조적 사각격자나 비구조적 삼각격자가 주로 적용된다. 2차원 수치모형을 이용한 홍수모델링에서 연구유역의 정보가 격자의 노드나 중심에 입력되므로 적용격자의 유형과 생성방법에 따라 모형의 입력자료 오차에 영항을 줄 수 있다. 따라서, 연구유역이 지형 변동성이 심한 지역이거나 흐름형상이나 흐름변동이 심한 구간이라면, 고해상도 격자를 통해 모형의 입력자료 오차를 최소화할 할 수 있다. 본 연구에서는 2가지 유형에 대한 연구를 수행하였다, 첫 번째는 홍수해석을 위한 2차원 모형의 격자형상과 해상도에 따른 홍수위 및 홍수범람범위를 비교·분석하는 연구를 수행하였다. 연구유역은 2000년 10월 29일부터 11월 19일까지 홍수가 발생한 영국의 Severn 강 유역이다. 연구유역의 홍수 모델링을 위한 지형자료는 3m 해상도의 LiDAR(Light Detection And Ranging)를 이용하여 구축하였으며, 격자유형 및 해상도에 따른 2차원 홍수위 및 홍수범람범위를 비교·분석하기 위해서 홍수 발생기간 동안 촬영된 4개(2000년 8월 11, 14, 15, 17일)의 ASAR(Advanced Synthetic Aperture Radar) 영상자료를 활용하였다. 즉, ASAR 영상으로 촬용된 최대범람시기 및 홍수류의 배수기를 활용하여 최대범람범위뿐만 아니라 홍수가 증가하는 시기와 하류단 배수로 인해 홍수가 감소하는 시기를 모두 포함하는 홍수범람범위에 대한 격자유형별 2차원 홍수범람모형의 계산 결과에 대해 비교하였다. 두 번째는 아마존 강 중류유역의 2,500K㎡ 면적에 해당하는 대규모 유역에 대해 SRTM(Shuttle Radar Topography Mission) 지형자료를 이용하여 홍수기와 갈수기에 대해 2차원 모델링을 수행하고 그 결과를 위성자료와 비교하였다.

  • PDF

Study of Deep Learning Based Specific Person Following Mobility Control for Logistics Transportation (물류 이송을 위한 딥러닝 기반 특정 사람 추종 모빌리티 제어 연구)

  • Yeong Jun Yu;SeongHoon Kang;JuHwan Kim;SeongIn No;GiHyeon Lee;Seung Yong Lee;Chul-hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In recent years, robots have been utilized in various industries to reduce workload and enhance work efficiency. The following mobility offers users convenience by autonomously tracking specific locations and targets without the need for additional equipment such as forklifts or carts. In this paper, deep learning techniques were employed to recognize individuals and assign each of them a unique identifier to enable the recognition of a specific person even among multiple individuals. To achieve this, the distance and angle between the robot and the targeted individual are transmitted to respective controllers. Furthermore, this study explored the control methodology for mobility that tracks a specific person, utilizing Simultaneous Localization and Mapping (SLAM) and Proportional-Integral-Derivative (PID) control techniques. In the PID control method, a genetic algorithm is employed to extract the optimal gain value, subsequently evaluating PID performance through simulation. The SLAM method involves generating a map by synchronizing data from a 2D LiDAR and a depth camera using Real-Time Appearance-Based Mapping (RTAB-MAP). Experiments are conducted to compare and analyze the performance of the two control methods, visualizing the paths of both the human and the following mobility.

Implementation of File-referring Octree for Huge 3D Point Clouds (대용량 3차원 포인트 클라우드를 위한 파일참조 옥트리의 구현)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.109-115
    • /
    • 2014
  • The aim of the study is to present a method to build an octree and to query from it for huge 3D point clouds of which volumes correspond or surpass the main memory, based on the memory-efficient octree developed by Han(2013). To the end, the method directly refers to 3D point cloud stored in a file on a hard disk drive instead of referring to that duplicated in the main memory. In addition, the method can save time to rebuild octree by storing and restoring it from a file. The memory-referring method and the present file-referring one are analyzed using a dataset composed of 18 million points surveyed in a tunnel. In results, the memory-referring method enormously exceeded the speed of the file-referring one when generating octree and querying points. Meanwhile, it is remarkable that a still bigger dataset composed of over 300 million points could be queried by the file-referring method, which would not be possible by the memory-referring one, though an optimal octree destination level could not be reached. Furthermore, the octree rebuilding method proved itself to be very efficient by diminishing the restoration time to about 3% of the generation time.

Improving Performance of File-referring Octree Based on Point Reallocation of Point Cloud File (포인트 클라우드 파일의 측점 재배치를 통한 파일 참조 옥트리의 성능 향상)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.437-442
    • /
    • 2015
  • Recently, the size of point cloud is increasing rapidly with the high advancement of 3D terrestrial laser scanners. The study aimed for improving a file-referring octree, introduced in the preceding study, which had been intended to generate an octree and to query points from a large point cloud, gathered by 3D terrestrial laser scanners. To the end, every leaf node of the octree was designed to store only one file-pointer of its first point. Also, the point cloud file was re-constructed to store points sequentially, which belongs to a same leaf node. An octree was generated from a point cloud, composed of about 300 million points, while time was measured during querying proximate points within a given distance with series of points. Consequently, the present method performed better than the preceding one from every aspect of generating, storing and restoring octree, so as querying points and memorizing usage. In fact, the query speed increased by 2 times, and the memory efficiency by 4 times. Therefore, this method has explicitly improved from the preceding one. It also can be concluded in that an octree can be generated, as points can be queried from a huge point cloud, of which larger than the main memory.

Experiment LOS Analysis of 3D Point Spatial Data (3차원 포인트 공간자료 가시선 분석 실험)

  • Park, Jae-Sun;Eo, Yang-Dam;Yeon, Sang-Ho;Moon, Jae-Heum;Kim, Hyung-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.55-61
    • /
    • 2010
  • Using 3D point data implemented from terrestrial LiDAR, this research has modelled geospatial data in 2 categories(gridded & un-gridded) and conducted LOS analysis experiment using outcome from the modeling exercise. To compare LOS analysis results from each of the 2 models in the above, maximum LOS (line of sight) range in the experimental area was specified as 30m in Area A, 40m in Area B and 50m in Area C and the time taken by LOS analysis and the number of visible points were measured. As for the LOS analysis experiment results, in comparison with the gridded model, the un-gridded model took about 3.9 times more time in Area A, 5.4 times in Area B and 6.5 times in Area C. In addition, about 0.97 times fewer points were measured in Area A, 0.93 times in Area B and 0.94 times in Area C. The difference between gridded model and un-gridded model in terms of the time taken by LOS analysis increased, as the maximum LOS range extended. On the other hand, the number visible points did not vary significantly in reference to the size of visible range.

An application of MMS in precise inspection for safety and diagnosis of road tunnel (도로터널에서 MMS를 이용한 정밀안전진단 적용 사례)

  • Jinho Choo;Sejun Park;Dong-Seok Kim;Eun-Chul Noh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.113-128
    • /
    • 2024
  • Items of road tunnel PISD (Precise Inspection for Safety and Diagnosis) were reviewed and analyzed using newly enhanced MMS (Mobile Mapping System) technology. Possible items with MMS can be visual inspection, survey and non-destructive test, structural analysis, and maintenance plan. The resolution of 3D point cloud decreased when the vehicle speed of MMS is too fast while the calibration error increased when it is too slow. The speed measurement of 50 km/h is determined to be effective in this study. Although image resolution by MMS has a limit to evaluating the width of crack with high precision, it can be used as data to identify the status of facilities in the tunnel and determine whether they meet disaster prevention management code of tunnel. 3D point cloud with MMS can be applicable for matching of cross-section and also possible for the variation of longitudinal survey, which can intuitively check vehicle clearance throughout the road tunnel. Compared with the measurement of current PISD, number of test and location of survey is randomly sampled, the continuous measurement with MMS for environment condition can be effective and meaningful for precise estimation in various analysis.

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.