• Title/Summary/Keyword: D-FEM

Search Result 1,527, Processing Time 0.035 seconds

Torque Analysis of Rotary Actuator Using Equvalent Magnetic Circuit method in combination with finite element method (등가자기회로법과 유한요소법을 이용한 액츄에이터의 토크특성 해석)

  • Kim, Young-Kyoun;Hong, Jung-Pyo;Kim, Je-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.605-607
    • /
    • 2000
  • Although Equvalent Magnetic Circuit (EMC) method. Using lumped parameter and numerical analysis method are widely used for electric machine analysis. these are neither always accurate enough nor sometimes available to easily use. Moreover three dimensional finite element method (3D-FEM) is inherently unsuitable for electric machine performance evaluation due to its poor computational efficiency, such as too long calculation time and difficulty in modeling for analysis. In this paper, Nonlinear Equivalent Magnetic Circuit (NEMC) method in combination with 2D-FEM is proposed to analyze the electric machine requiring 3D-FEM, and this method applys to torque evaluation for rotary actuator of Electro Magnetic Electronic Controller Power Steering (EM-ECPS).

  • PDF

Effect of groundwater level change on piled raft foundation in Ho Chi Minh City, Viet Nam using 3D-FEM

  • Kamol Amornfa;Ha T. Quang;Tran V. Tuan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.387-396
    • /
    • 2023
  • Ground subsidence, which is a current concern that affects piled raft foundations, has occurred at a high rate in Ho Chi Minh City, Viet Nam, due primarily to groundwater pumping for water supply. In this study, the groundwater level (GWL) change affect on a piled raft foundation was investigated based on the three-dimensional finite element method (3D-FEM) using the PLAXIS 3D software. The GWL change due to global groundwater pumping and dewatering were simulated in PLAXIS 3D based on the GWL reduction and consolidation. Settlement and the pile axial force of the piled raft foundation in Ho Chi Minh subsoil were investigated based on the actual design and the proposed optimal case. The actual design used the piled foundation concept, while the optimal case applied a pile spacing of 6D using a piled raft concept to reduce the number of piles, with little increased settlement. The results indicated that the settlement increased with the GWL reduction, caused by groundwater pumping and dewatering. The subsidence started to affect the piled raft foundation 2.5 years after construction for the actual design and after 3.4 years for the optimal case due to global groundwater pumping. The pile's axial force, which was affected by negative skin friction, increased during that time.

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case CAA German Working Group (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - CAA German Working Group)

  • Blanchet, D.;Golota, A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.800-811
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses in details these three aspects of wind noise simulation and recommends appropriate methods to deliver required results at the right time based on i) simulation and experimental data availability, ii) design stage at which a decision must be made and iii) time available to deliver these results. Several simulation methods are used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. Furthermore, a 1D and 2D wavenumber transformation is used to extract key parameters such as the convective and the acoustic component of the turbulent flow from CFD and/or experimental data whenever available. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied.

  • PDF

3D FEM Analysis of Warm Forging Process Design for Socket at Automotive Steering Unit (자동차 조향장치용 소???R의 온간단조 공정 설계를 위한 3차원 유한요소해석)

  • Lee Y. S.;Lee J. H.;Lee J. Y.;Bae M. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.186-189
    • /
    • 2001
  • In keeping with the needs of the times for energy and labor saving and simplifying production processes, interests has been growing in warm forging. Moreover, it is interested in increasing the material usage and production amounts. To improve the productivity and material usage, it is studied the process design of warm forging for socket. Until now, socket is manufactured by hot forging in hammer. The percentage of material usage is under $60\%$ in hammer forging. On the other han4 the percentage can be increased over $90\%$ in warm forging. To change the process from hot forging to warm forging, process designs must be performed. In this time, by using the FEM package, DEFORM-3D, we could get the shape of 1st process and minimum sealing pressure. They are very essential design data to decrease the trial and error. Practically, the overlap defect could be detected and eliminated with design modification of rib height and fillet radius. Moreover, forging load and minimum sealing pressure was defined by the 3D FEM analysis.

  • PDF

Implementation of an LFM-FSK Transceiver for Automotive Radar

  • Yoo, HyunGi;Park, MyoungYeol;Kim, YoungSu;Ahn, SangChul;Bien, Franklin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.258-264
    • /
    • 2015
  • The first 77 GHz transceiver that applies a heterodyne structure-based linear frequency modulation-frequency shift keying (LFM-FSK) front-end module (FEM) is presented. An LFM-FSK waveform generator is proposed for the transceiver design to avoid ghost target detection in a multi-target environment. This FEM consists of three parts: a frequency synthesizer, a 77 GHz up/down converter, and a baseband block. The purpose of the FEM is to make an appropriate beat frequency, which will be the key to solving problems in the digital signal processor (DSP). This paper mainly focuses on the most challenging tasks, including generating and conveying the correct transmission waveform in the 77 GHz frequency band to the DSP. A synthesizer test confirmed that the developed module for the signal generator of the LFM-FSK can produce an adequate transmission signal. Additionally, a loop back test confirmed that the output frequency of this module works well. This development will contribute to future progress in integrating a radar module for multi-target detection. By using the LFM-FSK waveform method, this radar transceiver is expected to provide multi-target detection, in contrast to the existing method.

FEM Modeling Automation of Machine Tools Structure (공작기계 구조물의 전산 모델링 자동화)

  • Lee, Chan-Hong;Ha, Tae-Ho;Lee, Jae-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1043-1049
    • /
    • 2012
  • The FEM analysis of machine tools is the general analysis process to evaluate machine performance in the industry for a long time. Despite advances in FEM software, because of difficult simplicity of CAD drawing, little experience of joints stiffness modeling and troublesome manual contact area divide for bindings, the industry designers think the FEM analysis is still an area of FEM analysis expert. In this paper, the automation of modeling process with simplicity of drawing, modeling of joints and contact area divide is aimed at easy FEM analysis to enlarge utilization of a virtual machine tools. In order to verify the effects of modeling automation, a slant bed type model with tilting table is analyzed. The results show FEM modeling automation method only needed 45 minutes to complete the whole modeling process, while manual modeling method requires almost one month with 8200 calculations for coordinate transformations and stiffness data input.

An adaptive X-FEM and its application to shape optimization (적응 확장 유한요소기법과 형상최적설계로의 응용)

  • Yu, Yong-Gyun;Huh, Jae-Sung;Tezuka, Akira;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.538-543
    • /
    • 2007
  • A procedure is proposed to generate optimal grid with minimal user intervention while keeping a prescribed level of accuracy, using an adaptive X-FEM and applied to shape optimization. In spite of various advantages of X-FEM, however, there are several obstacles for practical applications. Because of using a uniform background mesh and additional degree of freedoms for enrichment, an X-FEM is usually computationally more expensive than traditional finite element method. Furthermore, there are often accuracy problems. For an automatic procedure of optimal mesh generation, an h-adaptive scheme and a posteriori error estimation obtained by a post-processing process are utilized. The procedure is shown by 2-D shape optimization examples.

  • PDF

Analysis of Talus Slope Stability using 2D FEM and 3D Limit Equilibrium Method (2차원 유한요소법과 3차원 한계평형법을 이용한 테일러스 사면안정성 해석)

  • Lee, Kyoung-Mi;Kim, Sung-Kwon;Seo, Yaung-Seok;Lee, Sun-Bok;Kim, Dong-Hyun;Kim, Do-Sik
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.381-391
    • /
    • 2007
  • A series of talus slope stability analyses were carried out using 2D FEM and 3D limit equilibrium methods for this study. The FEM analyses on Phase 2 were performed to delineate failure depths based on stress distributions for each slope. The results revealed that the failure surface exist in the colluvium layer of about 3-10 m thickness. Three dimensional models, derived from the FEM analyses and geological field survey, were made for the use in a 3D limit equilibrium analysis. The result shows that all the talus slopes are stable under dry condition, but unstable under saturated condition due to heavy rain.

Analysis of the direction of the canine and carnassial of small dog by 3D FEM (3차원 유한요소분석에 의한 소형견의 견치와 열육치의 교합력 방향 분석)

  • Park, yujin;Choi, sungmin
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.139-145
    • /
    • 2020
  • Purpose: This study is for the prosthesis of dog. Observed the occlusal relation between the small dog canine and carnassial teeth. The direction of the bite force was analyzed by 3D FEM(finite element method). Methods: The mandibular canine and carnassial of dog were tested. The skull of dog was contact point confirmed by dental CAD. The skull of dog was scaned using CT and a 3D model was created. The 3D model was analyzed ABAQUS. Closing movement has been 100N, 200N, 300N, 500N, 1000N, 1500N. The Direction of bite force was confirmed. Results: As occlusal force increased, the direction of bite force appeared to (-y), (-x,-y,-z), (-x,-y), (-x,-y,+z), (-x,-y,+ z), (+x,-y) in mandibular left canine. And the direction was seen at (+x, -y), (+x,-y,-z), (+x,-y), (-x,-y,+z), (-x,-y,+z), (+x,-y). When the occlusal load is 100 N, 200 N, 300 N, 500 N, the direction of the mandibular carnassial appears as (-x, -y, -z), and when the occlusal load is 1000 N, 1500 N, the direction appears as (-x,-y). Conclusion: The mandibular canine showed irregularities in the coordinates of the direction of the bite force, and the mandibular carnassial showed regularity in the coordinates of the direction of the bite force.

Thermal Stress Analysis by Field Data Conversion between FDM and FEM (FDM과 FEM의 해석 데이터 변환에 의한 탄소성 열응력 해석)

  • Kwahk, S.Y.;Cho, C.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.228-234
    • /
    • 2001
  • The present study was an attempt for systematic data conversion between FDM and FEM in order to evaluate the thermal stress distribution during quenching process. It has been generally recognized that FDM is efficient in flow and temperature analysis and FEM in that of stress. But it induced difficulty and tedious work in analysis that one uses both FDM and FEM to take their advantages because of the discrepancy of nodes between analysis tools. So we proposed field data conversion procedure from FDM to FEM in 3-dimensional space, then applied this procedure to analysis of quenching process. The simulation procedure calculates the distributions of temperature and microstructure using FDM and microstructure evolution equations of diffusion and diffusionless transformation. FEM was used for predicting the distributions of thermal stress. The present numerical code includes coupled temperaturephase transformation kinetics and temperature-microstructure dependent material properties. Calculated results were compared with previous experimental data to verify the method, which showed good agreements.

  • PDF