• Title/Summary/Keyword: Cytotoxicity test

Search Result 535, Processing Time 0.029 seconds

Bioactive Cyclic Dipeptides from a Marine Sponge-Associated Bacterium, Psychrobacter sp.

  • Li, Huayue;Lee, Byung-Cheol;Kim, Tae-Sung;Bae, Kyung-Sook;Hong, Jong-Ki;Choi, Sang-Ho;Bao, Baoquan;Jung, Jee-Hyung
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.356-363
    • /
    • 2008
  • A bacterial strain with good antibacterial activities against Staphylococus aureus and Escherichia coli was isolated from a marine sponge Stelleta sp., and it was identified as a Psychrobacter sp. by comparative 16S rDNA sequence analysis. In our search for bioactive secondary metabolites from this psychrophillic and halotolerent bacterium, sixteen cyclic dipeptides (1-16) were isolated and their structures were identified on the basis of NMR analysis. In the test of the compounds for the protective effect against Vibrio vulnificusinduced cytotoxicity in human intestinal epithelial cells, cyclo-(L-Pro-L-Phe) (5) exhibited significant protective effect. Compounds 2, 6, and 11, which contain D-amino acid, were first isolated from bacteria.

In Vitro Biocompatibility Test of Multi-layered Plasmonic Substrates with Flint Glasses and Adhesion Films

  • Kim, Nak-Hyeon;Byun, Kyung Min;Hwang, Seoyoung;Lee, Yena;Jun, Sang Beom
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.174-179
    • /
    • 2014
  • Since in vitro neural recording and imaging applications based on a surface plasmon resonance (SPR) technique have expanded dramatically in recent years, cytotoxicity assessment to ensure the biosafety and biocompatibility for those applications is crucial. Here, we report the cytotoxicity of the SPR substrate incorporating a flint glass whose refractive index is larger than that of a conventional crown glass. A high refractive index glass substrate is essential in neural signal detection due to the advantages such as high sensitivity and wide dynamic range. From experimental data using primary hippocampal neurons, it is found that a lead-based flint glass is not appropriate as a neural recording template although the neuron cells are not directly attached to the toxic glass. We also demonstrate that the adhesion layer between the glass substrate and the gold film plays an important role in achieving the substrate stability and the cell viability.

Anthocyanin Analysis of Pressure-extracted Korean Blueberry Juice and in vitro Anti-inflammatory in RAW267.4 Cell line (국산 블루베리 착즙액의 안토시아닌 분석 및 RAW267.4 세포주에서의 항염효과)

  • Choi, Moon-Hee;Jeon, Young-Jin;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.191-196
    • /
    • 2015
  • Blueberry juice possesses rich-procyanidins and - anthocyanidin, comprised a group of with numerous health benefits such as protection against coronary heart disease, detoxification, and obesity. Blueberry (Vaccinium virgatum) juice extracts were analyzed and separated by an HPLC method for the purpose of the separation and quantification in polyphenolic groups. In specific HPLC conditions, a binary mobile phase consisting of formic acid: water (10:90, v/v, solvent A) and formic acid: water: acetonitrile (10:60:30, v/v/v, solvent B) was utilized and it is detected at 546 nm wavelength. The phenolic contents of the extracts are determined using Folin-Ciocalteu phenol reagent. In order to test anti-inflammation activity assay, after producing nitric oxide (NO) in lipopolysaccharide activated RAW 264.7 cells, at concentration of $20-500{\mu}g/mL$ it reduced to NO production at a dose-dependent manner. Importantly, cytotoxicity assay with up to $500{\mu}g/mL$ of the extract from blueberry juice showed ~100% cell viability for RAW264.7 cell line. Therefore, Korean blueberry juice might have potential as anti-oxidant and antiinflammation agents.

버섯균사체 배양물로부터 면역증진 기능성 소재 개발

  • Kim, Jeong-Ok
    • Food preservation and processing industry
    • /
    • v.6 no.2
    • /
    • pp.11-13
    • /
    • 2007
  • This study relates to low and medium molecular weight isoflavone-${\beta}$-D-glucan produced by submerged liquid culture of Agaricus blazei, a method of producing the isoflavone-B-D-glucan using autolysis enzyme of Agaricus blazei mycelia, and use of the isoflavone-B-D-glucan for anti-cancer and immunoenhancing effect. In acordance with one aspect of the present study, it deals with a method of producing isoflavone-${\beta}$-D-glucan, which comprises the followings; 1) culturing and separating mushroom mycelia, 2) producing low-medium molecular weight isoflavone-${\beta}$-D-glucan from high molecular weight one. The cytotoxicity on human cnacer cell line (Caco-2, MCF-7), the expression of Cyclin D, Bcl-2, Bax protein, p21 protein, p53 protein in MCF-7 cells assessed by SDS-PAGE and immunoblotting, and other immuno related factor such as TNF-a and IL-1B activities were examined. Structural identification of isoflavone-${\beta}$-D-glucan which shoed cytotoxicity against cancer cell and immunoenhancing effects was carried by separation with DEAE-cellulose column chromatography, TLC, HPLC, IR, NMR, Clinical test for the cancer patients (n=119) for 6 month was carried out, and immunoenhancing factors(NK cell number, ratio of T4/T8) were checked. We concluded the identified isoflavone-${\beta}$-D-glucan has immuno enhancing effects and could be useful for cancer chemoprevention.

  • PDF

Cross-Linked Collagen Scaffold from Fish Skin as an Ideal Biopolymer for Tissue Engineering

  • Biazar, Esmaeil;Kamalvand, Mahshad;Keshel, Saeed Heidari;Pourjabbar, Bahareh;Rezaei-Tavirani, Mustafa
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.186-192
    • /
    • 2022
  • Collagen is one of the most widely used biological materials in medical design. Collagen extracted from marine organisms can be a good biomaterial for tissue engineering applications due to its suitable properties. In this study, collagen is extracted from fish skin of Ctenopharyngodon Idella; then, the freeze drying method is used to design a porous scaffold. The scaffolds are modified with the chemical crosslinker N-(3-Dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) to improve some of the overall properties. The extracted collagen samples are evaluated by various analyzes including cytotoxicity test, SDS-PAGE, FTIR, DSC, SEM, biodegradability and cell culture. The results of the SDS-PAGE study demonstrate well the protein patterns of the extracted collagen. The results show that cross-linking of collagen scaffold increases denaturation temperature and degradation time. The results of cytotoxicity show that the modified scaffolds have no toxicity. The cell adhesion study also shows that epithelial cells adhere well to the scaffold. Therefore, this method of chemical modification of collagen scaffold can improve the physical and biological properties. Overall, the modified collagen scaffold can be a promising candidate for tissue engineering applications.

Antioxidant and Antibacterial Effects of Mixed Extracts of Phyllanthus emblica, Geranium (Pelargonium graveolens) and Commiphora myrrha: Possibility of Natural Materials for Acne Treatment

  • Mi Jeong Choi;Yu Ri Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.174-183
    • /
    • 2023
  • Various skin diseases are occurring due to external factors such as urbanization and increase in environmental pollution and wearing masks due to COVID-19. Accordingly, various functional cosmetics are being released, but as some side effects are reported, research on functional cosmetics materials using natural plants is necessary. Therefore, in this study, the antioxidant, antibacterial and anti-inflammatory effects of Phyllanthus emblica, Geranium (Pelargonium graveolens), and Commiphora myrrha mixed extracts (PGC) that pharmacological efficacy has been verified were analyzed and their potential as functional cosmetics raw materials was examined. Four extracts (PGC-1~4) were prepared according to the extraction method. ABTS and DPPH radical scavenging activity experiments were conducted for the antioxidant efficacy of the extracts. In addition, paper disc experiments and LPS inflammation-inducing cytokine experiments were conducted to examine the antibacterial and anti-inflammatory effects. In addition, a cell viability test was performed to confirm cytotoxicity. As results of the study, all extracts showed antioxidant, antibacterial, and anti-inflammatory effects without cytotoxicity, and in particular, PGC-4, a fermentation and ultrasonic extract, showed the best efficacy. This means that the extraction yield of useful components varies depending on the extraction method.

Biocompatibility of Ti-8wt.%Ta-3wt.%Nb alloy with Surface Modification (표면 개질에 따른 Ti-8wt.%Ta-3wt.%Nb 합금의 생체적합성)

  • Lee, Doh-Jae;Lee, Kyung-Ku;Park, Bum-Su;Lee, Kwang-Min;Park, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.277-284
    • /
    • 2006
  • The alloys were prepared by a non-consumable vacuum arc melting and homogenized at $1050^{\circ}C$ for 24 hrs. Two kind of surface modifications were performed alkali treatment in 5.0M NaOH solution subsequent and heat treatment in vacuum furnace at $600^{\circ}C$, and were oxidizing treatment at the temperature range of 550 to $750^{\circ}C$ for 30 minutes. After surface modification, these samples were soaked in SBF which consists of nearly the same ion concentration as human blood plasma. Cytotoxicity tests were performed in MTT assay treated L929 fibroblast cell culture, using indirect methods. A porous and thin activated layer was formed on Titanium and Ti-8Ta-3Nb alloy by the alkali treatment. A bone-like hydroxyapatite was nucleated on the activated porous surfaces during the in vitro test. However, Ti-8Ta-3Nb alloys showed better bioactive properties than Titanium. According to XRD results, oxide layers composed of mostly $TiO_2$(rutile) phases. Cytotoxicity test also revealed that moderate oxidation treatment lowers cell toxicity and Ti-8Ta-3Nb alloy showed better results compared with Titanium.

Study on Effect of Skin Elasticity by Polar Low Molecular Weight Keratin Peptide (극성 저분자 케라틴 펩타이드에 의한 피부 탄력 변화 연구)

  • Maeng, Jihye;Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.3
    • /
    • pp.243-252
    • /
    • 2020
  • Using Fervidobacterium islandicum AW-1, polar low molecular weight keratin peptides were produced and confirmed through factors related to the skin elasticity. As a result of confirming the cytotoxicity and collagen synthesis ability according to the concentration of the polar low molecular weight keratin peptide in human fibroblasts, it was confirmed that the cytotoxicity did not appear and the collagen synthesis in human fibroblasts was increased. A mask pack containing a polar low-molecular weight keratin peptide was used, and a test product was used for 4 weeks in 22 healthy women subjects. As a result, it showed statistically significant effects on skin elasticity, skin torsion elasticity, skin color and moisture improvement. Through this test, it was confirmed that the polar low-molecular keratin peptide can be used as a cosmetic ingredient that helps improve skin elasticity.

Biological Effects Of Flurbiprofen Loaded Chitosan To Gingival Fibroblast (Flurbiprofen 함유 키토산 제제가 치은 섬유아세포에 미치는 영향)

  • Chung, Chong-Pyoung;Park, Yoon-Jeong;Lee, Seung-Jin;Rhyu, In-Cheol;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.317-333
    • /
    • 1996
  • The main goal of periodontal regeneration is to be achieved by epithelial exclusion, periodontal ligament cell activation or alveolar bone regeneration. The purpose of this study was to investigate on the physico- chemical and biological characteristics of biodegradable chitosan beads. Chitosan beads were fabricated by ionic gelation with sodium tripolyphosphate and they had the size in 300um diameter. As therapeutic agent, flurbiprofen was incorporated into the beads by 10, 20% loading contents. The release of drugs from the chitosan beads was measured in vitro. Also, biological activity tests of flurbiprofen loaded chitosan beads including cytotoxicity test, ihhibition of $IL-1{\beta}$ production, suppression to $PGE_2$ production, collagenase inhibition test, the ability of total protein synthesis, and tissue response were evaluated. The amount of flurbiprofen released from chitosan was 33-50% during 7 days. Minimal cytotoxicity was observed in chitosan beads. Flurbiprofen released from chitosan beads significantly suppressed the $IL-1{\beta}$ production of monocyte, $PGE_2$ production and markedly inhibited collagenase activity. Meanwhile, flurbiprofen released from this system showed increased ability for protein synthesis. Throughout 4 -week implantation period, no significant inflammatory cell infiltrated around chitosan bead and also fibroblast like cell types at the beads - tissue interface were revealed with gradual degradation of implanted chitosan beads. From these results, it was suggested that flurbiprofen loaded chitosan beads can be effectively useful for biocompatible local delivery system in periodontal regeneration.

  • PDF

Cytolytic Activities of Taxol on Neural Stem Cells

  • Lee, In-Soo;Han, Hye-Eun;Lee, Hye-Young;Kim, Seung-U.;Kim, Tae-Ue
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.273-278
    • /
    • 2007
  • Stem cells have been the subject of increasing scientific interest because of their utility in numerous biomedical applications. Stem cells are capable of renewing themselves; that is, they can be continuously cultured in an undifferentiated state, giving rise to more specialized cells of the human body. Therefore, stem cells are an important new tools for developing unique, in vitro model systems to test drugs and chemicals and a potential to predict or anticipate toxicity in humans. In the present study, in vitro cultured F3 immortalized human neural stem cell line and in vivo adult Sprague Dawley rats was used to evaluate the cytotoxicity of anticancer drug paclitaxel. In vitro apoptotic activity of paclitaxel was evaluated in F3 cell line by a MTT assay and DAPI test. The cell death was induced with the treatment of 20 nM paclitaxel and chromatin degradation was detected by DAPI staining, which was analyzed by fluorescent microscope. In vivo studies, we also observed nestin immunoreactivity on subventricular zone, which is stem cell rich region in the adult brain of the SD rat. Immunofluorescent staining result shows that pixel intensities of nestin were decreased in a dose dependent manner. These results suggest that paclitaxel is able to induce cytotoxic activity both in F3 neural stem cell line and neural stem cell in SD rat brain.

  • PDF