• Title/Summary/Keyword: Cytokines $(TNF-{\alpha}$

Search Result 1,322, Processing Time 0.023 seconds

Studies on Inhibitory Effect of inflammatory Cytokines Secretion from Brain Astrocytes by Sesim-Tang (세심탕(洗心湯)에 의한 뇌(腦) 성상세포(星狀細胞)로부터 염증성(炎症性) 세포활성물질(細胞活性物質)의 분필(分泌) 억제(抑制) 효과(效果))

  • Kim Tae-Heon;Kim Jun-Han;Lyu Yeoung-Su;Kang Hyung-Won
    • Journal of Oriental Neuropsychiatry
    • /
    • v.12 no.1
    • /
    • pp.137-149
    • /
    • 2001
  • Cytokines are polypeptides which possess various biological properties affecting. host defense function and response to disease. Inflammatory cytokines, tumor necrosis $factor-{\alpha}$(TNF-${\alpha}$), interleukin(IL)-1 and IL-6 induce inflammation, fever, hypotension and pain when injected into animals or human subject. When glial cell cultures were prepared from neonatal mice or rats, astrocytes were reported to produce these inflammatory cytokines to viral infection, lipopolysaccharide(LPS), or cytokines. The purpose of this study was to investigate the regulatory effect of these cytokines secretion from primary cultures of rat astrocytes. Substance P(SP) can stimulate secretion of TNF-${\alpha}$ from astrocytes stimulated with LPS. Sesim-Tang significantly inhibited the TNF-${\alpha}$ secretion by astrocytes stimulated with SP and LPS. IL-1 has been shown to elevate TNF-${\alpha}$ secretion from LPS-stimulated astrocytes while having no effect on astrocytes in the absence of LPS. We therefore also investigated whether IL-1 mediated inhibition of TNF-${\alpha}$ secretion from primary astrocytes by Sesim-Tang. Treatment of Sesim-Tang to astrocytes stimulated with both LPS and SP decreased IL-1 secretion significantly. The secretion of TNF-${\alpha}$ by LPS and SP in astrocytes was progressively inhibited with increasing amount of IL-1 neutralizing antibody. Furthermore Sesim-Tang inhibited the IL-6 secretion by astrocytes stimulated with SP and LPS. The inhibitory effect of inflammatory cytokines by Sesim-Tang, observed in this study, might reflect an antiinflammatory activity and a reduction of various-type pains, fever etc. in the central nervous system.

  • PDF

Expression of Tumor Necrosis Factor (TNF)-z${\alpha}$ from Cells Undergoing Death by FADD

  • Kim, Koanhoi
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.57-60
    • /
    • 2002
  • Apoptosis of vascular smooth muscle cell is observed in the vascular diseases such as atherosclerosis and restenosis. The death of vascular smooth muscle cells can be induced by cytokines and activation of Fas-pathways. It is widely accepted that apoptosis occurs without inflammation. There are, however, reports that apoptosis is not silent. Vascular smooth muscle cells dying by Fas-pathway secreted inflammatory cytokines including monocyte chemoattractant protein-1. This study have investigated whether apoptosis is associated with potent inflammatory cytokine tumor tumor necrosis factor (TNF)-${\alpha}$. The cells which undergo apoptosis by expressing FADD in the absence of tetracycline expressed and secreted TNF-${\alpha}$. When the level of TNF-${\alpha}$ transcript was investigated, dying smooth muscle cells exhibited transcriptional activation of TNF-${\alpha}$. The data indicate that dying vascular smooth muscle cells contribute to inflammation by expressing inflammatory cytokines. The present study suggests that apoptosis could not be silent in certain pathological situations.

  • PDF

The Effect of Artemisia Capillaris Herba on Ethanol-Induced Cytokines(TNF-${\alpha},IL-1{\alpha}$) Secretion in Hep G2 Cells (인진호가 Hep G2 세포에서 에탄올 매개성 Cytokine 분비에 미치는 영향)

  • Sim, Jung-Sub;Kim, Il-Hwan;Kim, Gang-San;Kagn, Byung-Ki;Choi, Su-Deock
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.87-93
    • /
    • 2001
  • A human hepatoma cell line, Hep G2 cells, is reliable for the study of alcohol-induced hepatotoxicity. The aim of this study is to determine the relationship between TNF-${\alpha}$, IL-$1{\alpha}$ production and EtOH-induced cytotoxicity on Hep G2 cells. The cells were incubated with EtOH in the presence of Artemisia Capillaris Herba(AC) for 24 hours and in the absence of AC for 48 hours. Cytoviability and cytokines release were analyzed by MTT assay and enzyme linked immunosorbent assay (ELISA), respectively. After 24 hours of EtOH exposure, the cytoviability had markedly decreased, and the release of cytokines had increased. The increased amount of cytokines contributed to EtOH-induced cytotoxicity. Anti-TNF-${\alpha}$ and IL-$1{\alpha}$ antibodies almost abolished it. Interestingly, EtOH-induced cytotoxicity and cytokines production were inhibited by AC. Moreover, when AC was used in combination with antibodies, there was a marked inhibition of EtOH-induced cytotoxicity. These results suggest that EtOH-induced cytotoxicity may regulate, by various factors, and AC may prevent the cytotoxicity through partial inhibition of the $TNF-{\alpha}$ and IL-$1{\alpha}$ secretion.

  • PDF

EFFECTS OF SEVERAL CYTOKINES ON THE FUNCTIONS OF FETAL RAT OSTEOBLAST-LIKE CELLS IN VITRO

  • Han, Hee-Sung;Kim, Jung-Keun;Chang, Young-IL
    • The korean journal of orthodontics
    • /
    • v.25 no.6 s.53
    • /
    • pp.689-696
    • /
    • 1995
  • Effects of several cytokines($IL-1{\beta},\;TNF_{\alpha},\;and\;IFN_{\gamma}$) have been examined on fetal rat osteoblast-like cells. To investigate whether cytokines play direct causal roles in production of lysosomal enzyme, fetal rat osteoblast-like cells were treated with $IL-1{\beta},\;TNF_{\alpha},\;and\;IFN_{\gamma}$, respectively or combined. And acid phosphatase was determined by biochemical method. Alkaline phosphatase was assayed to determine the effects of $IL-1{\beta},\;TNF_{\alpha},\;and\;IFN_{\gamma}$ on the expression of this enzyme. And also experiment of calcified nodule formation was performed to assess the effects of cytokines on the bone-forming activity of osteoblast-like cells in vitro. Acid phosphatase activity was significantly increased by the addition of $IL-1{\beta}\;and\;TNF_{\alpha}$, whereas decreased by $IFN_{\gamma}$. However, no significant change:: in alkaline phosphatase activity was observed when the osteoblast-like cells were treated with $IL-1{\beta}\;and\;TNF_{\alpha}$. Interestingly, $IFN_{\gamma}$ showed stimulatory effect on alkaline phosphatase activity. The number of calcified nodules was decreased by treatment of cultures with 1 ng/ml $IL-1{\beta},\;20\;ng/ml\;TNF_{\alpha}$, and 500 u/ml $IFN_{\gamma}$ continuously for 21 days, while considerable number of calcified nodules were formed in control group of osteoblast-like cell in culture for 21 days. These results seem to suggest that cytokines may play crucial roles in bone remodeling through the direct action on the osteoblast-like cell.

  • PDF

Expression of Cytokines in Radiation Injured Brain at Acute Phase

  • Lee, Jang-Bo;Kim, Min-Ho;Chung, Yong-Gu;Park, Jung-Yul
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.200-204
    • /
    • 2007
  • Objective : Radiation therapy is an important treatment for brain tumor. However, serious complications such as radiation necrosis can occur and it may be secondary to the expression of acute phase genes, like cytokines. In particular, inflammatory cytokines (IL-$1{\beta}$, TNF-${\alpha}$) and other immunomodulatory cytokines (TNF-${\alpha}$, TGF-${\beta}1$) might be changed after irradiation (high single dose irradiation). Although it has been reported that IL-1 level is remarkably elevated within 8 week after the irradiation to the rat brain. the change of cytokines levels at acute phase (within 24 hours) has not been reported. In the present study, we examined TNF-${\alpha}$, TGF-${\beta}1$, and IL-$1{\beta}$ levels in acute phase to clarify the early effect of cytokines on the radiation-induced brain damage. Methods : Fifty Sprague-Dawley rats were used and these were divided into irradiation group and control group. After a burr-hole trephination on the right parietal area using a drill, a single 10Gy was irradiated at the trephined site. Their forebrains were extirpated at 30 min, 2 hr, 8 hr, 12 hr and 24 hr, respectively and examined for the expression of TNF-${\alpha}$, TGF-${\beta}1$, and IL-$1{\beta}$. Results : The expression of TNF-${\alpha}$ and TGF-${\beta}1$ were decreased until 12 hr after irradiation but elevated thereafter. The expression of IL-1 was peak at 8 hr and then decreased until 12 hr but elevated after this time window. The present study indicated that expression of cytokines (TNF-${\alpha}$, TGF-${\beta}1$ and IL-$1{\beta}$) were increased at 24 hr after the irradiation to the rat brain. IL-$1{\beta}$ level, on the other hand. reached peak at 8 hr after radiation injury. Conclusion : These findings indicate that IL-1, among various cytokines, may have a more important role in the inflammatory reaction by radiation injury at acute phase and provide some clues for better understanding of the pathogenesis of radiation injury.

The Changes of P-glycoprotein Activity by Interferon-γ and Tumor Necrosis Factor-α in Primary and Immortalized Human Brain Microvascular Endothelial Cells

  • Lee, Na-Young;Rieckmann, Peter;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.293-298
    • /
    • 2012
  • The purpose of this study was to investigate the modification of expression and functionality of the drug transporter P-glycoprotein (P-gp) by tumor necrosis factor-alpha (TNF-${\alpha}$) and interferon-gamma (IFN-${\gamma}$) at the blood-brain barrier (BBB). We used immortalized human brain microvessel endothelial cells (iHBMEC) and primary human brain microvessel endothelial cells (pHBMEC) as in vitro BBB model. To investigate the change of p-gp expression, we carried out real time PCR analysis and Western blotting. To test the change of p-gp activity, we performed rhodamin123 (Rh123) accumulation study in the cells. In results of real time PCR analysis, the P-gp mRNA expression was increased by TNF-${\alpha}$ or IFN-${\gamma}$ treatment for 24 hr in both cell types. However, 48 hr treatment of TNF-${\alpha}$ or IFN-${\gamma}$ did not affect P-gp mRNA expression. In addition, co-treatment of TNF-${\alpha}$ and IFN-${\gamma}$ markedly increased the P-gp mRNA expression in both cells. TNF-${\alpha}$ or IFN-${\gamma}$ did not influence P-gp protein expression whatever the concentration of cytokines or duration of treatment in both cells. However, P-gp expression was increased after treatments of both cytokines together in iHBMEC cells only compared with untreated control. Furthermore, in both cell lines, TNF-${\alpha}$ or IFN-${\gamma}$ induced significant decrease of P-gp activity for 24 hr treatment. And, both cytokines combination treatment also decreased significantly P-gp activity. These results suggest that P-gp expression and function at the BBB is modulated by TNF-${\alpha}$ or/and IFN-${\gamma}$. Therefore, the distribution of P-gp depending drugs in the central nervous system can be modulated by neurological inflammatory diseases.

EFFECT OF TUMOR NECROSIS FACTOR-α ON THE BONE METABOLISM (Tumor Necrosis Factor-α가 골대사에 미치는 영향)

  • Kim, Sang-Sub;Lee, Su-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.187-199
    • /
    • 1999
  • Bone remodeling is characterized by the continuing processes of osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Bone metabolism is tightly regulated at the local level by networks of hormones, cytokines, and other factors. In pathological conditions of bone remodeling, including osteoporosis and periodontal diseases, inflammatory cytokines and local mediators are responsible for enhancement of osteoclast resorption and inhibition of repair at the sites of bone resorption. TNF-${\alpha}$ is a pleiotropic hormone with actions on the differentiation, growth, and functional activities of normal and malignant cells from numerous tissues. TNF-${\alpha}$ has been proposed as a local mediator of the control of bone turnover in situations of chronic inflammation, and it has been assumed that the local source of TNF-${\alpha}$ is the monocyte in the adjacent bone marrow or the local circulation. TNF-${\alpha}$ is a potent inducer of bone resorption. TNF-${\alpha}$ is known to induce the activation of apoptotic signaling pathway, which leads to the apoptosis of bone cells. We demonstrated that treatment of murine osteoblastic MC3T3E1 cells with TNF-${\alpha}$ decreases proliferation as well as alkaline phosphatase (ALP) activity in a dose depenent manner. In addition, TNF-${\alpha}$ increases osteoclast-like cell formation in $1{\alpha}$, 25(OH)2D3 or PGE2-treated bone marrow cell culture. When cells were cultured in TNF-${\alpha}$ free ${\alpha}$-MEM, this inhibitory effect of ALP activity was reversible up to 10 ng/ml TNF-${\alpha}$, in contrast, at the 20 ng/ml TNF-${\alpha}$, irreversible. In this concentration, TNF-${\alpha}$ may induce apoptosis in MC3T3E1 cells. In this study, TNF-${\alpha}$ induces apoptosis resulting in chromosomal DNA fragmentation, preceded by JNK/SAPKs and caspase-3 activation. Our present results show that JNK/SAPKs and caspase-3 are activated by TNF-${\alpha}$, suggesting that the JNK/SAPKs and caspase-3 participate in the bone resorption, associated with apoptosis.

  • PDF

Inhibition of COX-2 Activity and Proinflammatory Cytokines($TNF-{\alpha}{\;}and{\;}IL-1{\beta}$) Production by Water-Soluble Sub-Fractionated Parts from Bee (Apis mellifera) Venom

  • Nam, Kung-Woo;Je, Kang-Hoon;Lee, Jang-Hurn;Han, Ho-Je;Lee, Hye-Jung;Kang, Sung-Kil;Mar, Woongchon
    • Archives of Pharmacal Research
    • /
    • v.26 no.5
    • /
    • pp.383-388
    • /
    • 2003
  • Bee venom is used as a traditional medicine for treatment of arthritis. The anti-inflammatory activity of the n-hexane, ethyl acetate, and aqueous partitions from bee venom (Apis mellifera) was studied using cyclooxygenase (COX) activity and pro-inflammatory cytokines (TNF-$\alpha and IL-1\beta$) production, in vitro. COX-2 is involved in the production of prostaglandins that mediate pain and support the inflammatory process. The aqueous partition of bee venom showed strong dose-dependent inhibitory effects on COX-2 activity ($IC_{50} = 13.1 \mu$ g/mL), but did not inhibit COX-1 activity. The aqueous partition was subfractionated into three parts by molecular weight differences, namely, B-F1 (above 20 KDa), B-F2 (between 10 KDa and 20 KDa) and BF-3 (below 10 KDa). B-F2 and B-F3 strongly inhibited COX-2 activity and COX-2 mRNA expression in a dose-dependent manner, without revealing cytotoxic effects. TNF-$\alpha and IL-1\beta$ are potent pro-inflammatory cytokines and are early indicators of the inflammatory process. We also investigated the effects of three subfractions on TNF-$\alpha and IL-1\beta$ production using ELISA method. All three subfractions, B-F1, B-F2 and B-F3, inhibited TNF-$\alpha and IL-1\beta$production. These results suggest the pharmacological activities of bee venom on anti-inflammatory process include the inhibition of COX-2 expression and the blocking of pro-inflammatory cytokines (TNF-$\alpha and IL-1\beta$) production.

The Effects of Bee Venom on Tumor Necrosis Factor (TNF)-${\alpha}$ Induced Inflammatory Human HaCaT Keratinocytes (Tumor Necrosis Factor (TNF)-${\alpha}$로 유도된 피부각질형성세포의 염증성 반응에서 봉독의 효과)

  • Lee, Woo-Ram;Kim, Kyung-Hyun;An, Hyun-Jin;Kim, Jung-Yeon;Han, Sang-Mi;Lee, Kwang-Gill;Park, Kwan-Kyu
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.3
    • /
    • pp.256-261
    • /
    • 2014
  • Bee venom (BV) therapy has been used as a traditional medicine to treat a variety of conditions, such as arthritis, back pain, cancerous tumors, and skin diseases. However, regulatory effects of BV on tumor necrosis factor (TNF)-${\alpha}$-induced HaCaT cell migration or anti-inflammatory have not been explored. In the present study, we investigated the effects of BV on HaCaT cell migration and anti-inflammation. HaCaT cell migration was evaluated by wound-healing assay. The pro-inflammatory cytokines such as TNF-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-8 were examined by ELISA or Western blotting. BV treatment led to an increase in migration of HaCaT cells for 24 and 48 h. Especially, 10 ng/ml of BV were significantly increased HaCaT cell migration. Also, BV suppressed the secretion of TNF-${\alpha}$, IL-$1{\beta}$, and IL-8 in culture medium with HaCaT cells. In addition, Western blot results demonstrate that BV suppressed the expression of TNF-${\alpha}$ and IL-$1{\beta}$, in HaCaT cells. Especially, 1 or 10 ng/ml of BV markedly decreased the expression of pro-inflammatory cytokines. These results demonstrate the potential of BV for the prevention of skin inflammation induced by TNF-${\alpha}$.

Triglycerides increase mRNA Expression of Pro-inflammatory Cytokines Via the iNOS in Jurkat T lymphocyte and U937 Monocyte Cell Lines (Jurkat T 림프구와 U937 단핵구에서 중성지방 처리 시 iNOS를 통한 염증성 사이토카인의 mRNA 발현 증가)

  • Chang, Jeong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.133-140
    • /
    • 2019
  • Triglycerides (TG) are one of the triggers of chronic inflammatory lesions in the blood vessels. In the key factors in the development of inflammatory diseases, Pro-inflammatory cytokines such as tumor necrosis factor-alpha $(TNF-){\alpha}$ and interleukin-1 beta ($IL-1{\beta}$) contribute to the development of inflammatory lesions by recruiting other immune cells in the inflamed area or causing cell necrotic death. In this study, I investigated the effect of Jurkat T lymphocytes and U937 monocytes involved in vascular inflammation development on the expression of $TNF-{\alpha}$ and $IL-1{\beta}$ on exposure to TGs. In Jurkat cells, mRNA expression of $TNF-{\alpha}$ is increased by exposure to TGs. However, the expression levels of $TNF-{\alpha}$ and $IL-1{\beta}$ were increased by TGs in U937 cells. To investigate whether inducible nitric oxide synthase (iNOS) is involved in the increase of expression of $TNF-{\alpha}$ and $IL-1{\beta}$ by TGs, treatment of W1400 (an iNOS inhibitor) resulted in recovery of expression level both $TNF-{\alpha}$ and $IL-1{\beta}$. Based on the present study, it was confirmed that the expression of $TNF-{\alpha}$ and $IL-1{\beta}$ in monocytes and T lymphocytes. This increased cytokines contribute to development of vascular inflammatory lesions. In addition, iNOS is involved in the increase of $TNF-{\alpha}$ and $IL-1{\beta}$ expression by TGs.