Browse > Article
http://dx.doi.org/10.4062/biomolther.2012.20.3.293

The Changes of P-glycoprotein Activity by Interferon-γ and Tumor Necrosis Factor-α in Primary and Immortalized Human Brain Microvascular Endothelial Cells  

Lee, Na-Young (College of Pharmacy, Research Center for Cell Fate Control, Sookmyung Women's University)
Rieckmann, Peter (Department of Neurology, Julius-Maximilians-University)
Kang, Young-Sook (College of Pharmacy, Research Center for Cell Fate Control, Sookmyung Women's University)
Publication Information
Biomolecules & Therapeutics / v.20, no.3, 2012 , pp. 293-298 More about this Journal
Abstract
The purpose of this study was to investigate the modification of expression and functionality of the drug transporter P-glycoprotein (P-gp) by tumor necrosis factor-alpha (TNF-${\alpha}$) and interferon-gamma (IFN-${\gamma}$) at the blood-brain barrier (BBB). We used immortalized human brain microvessel endothelial cells (iHBMEC) and primary human brain microvessel endothelial cells (pHBMEC) as in vitro BBB model. To investigate the change of p-gp expression, we carried out real time PCR analysis and Western blotting. To test the change of p-gp activity, we performed rhodamin123 (Rh123) accumulation study in the cells. In results of real time PCR analysis, the P-gp mRNA expression was increased by TNF-${\alpha}$ or IFN-${\gamma}$ treatment for 24 hr in both cell types. However, 48 hr treatment of TNF-${\alpha}$ or IFN-${\gamma}$ did not affect P-gp mRNA expression. In addition, co-treatment of TNF-${\alpha}$ and IFN-${\gamma}$ markedly increased the P-gp mRNA expression in both cells. TNF-${\alpha}$ or IFN-${\gamma}$ did not influence P-gp protein expression whatever the concentration of cytokines or duration of treatment in both cells. However, P-gp expression was increased after treatments of both cytokines together in iHBMEC cells only compared with untreated control. Furthermore, in both cell lines, TNF-${\alpha}$ or IFN-${\gamma}$ induced significant decrease of P-gp activity for 24 hr treatment. And, both cytokines combination treatment also decreased significantly P-gp activity. These results suggest that P-gp expression and function at the BBB is modulated by TNF-${\alpha}$ or/and IFN-${\gamma}$. Therefore, the distribution of P-gp depending drugs in the central nervous system can be modulated by neurological inflammatory diseases.
Keywords
TNF-${\alpha}$; IFN-${\gamma}$; P-glycoprotein; Human brain microvascular endothelial cell; Blood-brain barrier; Efflux transport;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tamai, I. and Tsuji, A. (2000) Transporter-mediated permeation of drugs across the blood-brain barrier. J. Pharm. Sci. 89, 1371-1388.   DOI   ScienceOn
2 Theron, D., Barraud de Lagerie, S., Tardivel, S., Pélerin, H., Demeuse, P., Mercier, C., Mabondzo, A., Farinotti, R., Lacour, B., Roux, F. and Gimenez, F. (2003) Influence of tumor necrosis factor-alpha on the expression and function of P-glycoprotein in an immortalised rat brain capillary endothelial cell line, GPNT. Biochem. Pharmacol. 66, 579-587.   DOI
3 Uceyler, N., Valenza, R., Stock, M., Schedel, R., Sprotte, G. and Sommer, C. (2006) Reduced levels of antiinfl ammatory cytokines in patients with chronic widespread pain. Arthritis. Rheum. 54, 2656-2664.   DOI
4 Walther, W. and Stein, U. (1994) Influence of cytokines on mdr1 expression in human colon carcinoma cell lines: increased cytotoxicity of MDR relevant drugs. J. Cancer Res. Clin. Oncol. 120, 471-478.   DOI
5 Yu, C., Kastin, A. J., Tu, H., Waters, S. and Pan, W. (2007) TNF activates P-glycoprotein in cerebral microvascular endothelial cells. Cell Physiol. Biochem. 20, 853-858.   DOI
6 Paludan, S. R. (2000) Synergistic action of pro-inflammatory agents: cellular and molecular aspects. J. Leukoc. Biol. 67, 18-25.
7 Pardridge, W. M. (1988) Recent advances in blood-brain barrier transport. Annu. Rev. Pharmacol. Toxicol. 28, 25-39.   DOI
8 Perry, V. H., Anthony, D. C., Bolton, S. J. and Brown, H. C. (1997) The blood-brain barrier and the inflammatory response. Mol. Med. Today 3, 335-341.   DOI   ScienceOn
9 Poller, B., Drewe, J., Krahenbühl, S., Huwyler, J. and Gutmann, H. (2010) Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. Cell. Mol. Neurobiol. 30, 63-70.   DOI
10 Puddu, P., Fais, S., Luciani, F., Gherardi, G., Dupuis, M. L., Romagnoli, G., Ramoni, C., Cianfriglia, M. and Gessani, S. (1999) Interferongamma up-regulates expression and activity of P-glycoprotein in human peripheral blood monocyte-derived macrophages. Lab. Invest. 79, 1299-1309.
11 Schinkel, A. H., Smit, J. J., van Tellingen, O., Beijnen, J. H., Wagenaar, E., van Deemter, L., Mol, C. A., van der Valk, M. A., Robanus- Maandag, E. C., te Riele, H. P., Berns, A. J. M. and Borst, P. (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491-502.   DOI   ScienceOn
12 Schmitz, H., Fromm, M., Bentzel, C. J., Scholz, P., Detjen, K., Mankertz, J., Bode, H., Epple, H. J., Riecken, E. O. and Schulzke, J. D. (1999) Tumor necrosis factor-alpha (TNFalpha) regulates the epithelial barrier in the human intestinal cell line HT-29/B6. J. Cell Sci. 112, 137-146.
13 Spector, R. (1989) Micronutrient homeostasis in mammalian brain and cerebrospinal fluid. J. Neurochem. 53, 1667-1674.   DOI
14 Stins, M. F., Gilles, F. and Kim, K. S. (1997) Selective expression of adhesion molecules on human brain microvascular endothelial cells. J. Neuroimmunol. 76, 81-90.   DOI
15 Hartz, A. M., Bauer, B., Fricker, G. and Miller, D. S. (2004) Rapid regulation of P-glycoprotein at the blood-brain barrier by endothelin-1. Mol. Pharmacol. 66, 387-394.   DOI
16 Hartz, A. M., Bauer, B., Fricker, G. and Miller, D. S. (2006) Rapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Mol. Pharmacol. 69, 462-470.
17 Huber, J. D., Egleton, R. D. and Davis, T. P. (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 24, 719-725.   DOI   ScienceOn
18 Konsman, J. P., Vigues, S., Mackerlova, L., Bristow, A. and Blomqvist, A. (2004) Rat brain vascular distribution of interleukin-1 type-1 receptor immunoreactivity: relationship to patterns of inducible cyclooxygenase expression by peripheral infl ammatory stimuli. J. Comp. Neurol. 472, 113-129.   DOI
19 Kallmann, B. A., Hummel, V., Lindenlaub, T., Ruprecht, K., Toyka, K. V. and Rieckmann, P. (2000) Cytokine-induced modulation of cellular adhesion to human cerebral endothelial cells is mediated by soluble vascular cell adhesion molecule-1. Brain 123, 687-697.   DOI
20 Kipp, H., Pichetshote, N. and Arias, I. M. (2001) Transporters on demand: intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J. Biol. Chem. 276, 7218-7224.   DOI
21 McCarron, R. M., Wang, L., Racke, M. K., McFarlin, D. E. and Spatz, M. (1993) Cytokine-regulated adhesion between encephalitogenic T lymphocytes and cerebrovascular endothelial cells. J. Neuroimmunol. 43, 23-30.   DOI
22 Ohmori, Y., Schreiber, R. D. and Hamilton, T. A. (1997) Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappaB. J. Biol. Chem. 272, 14899-14907.   DOI   ScienceOn
23 Akazawa, Y., Kawaguchi, H., Funahashi, M., Watanabe, Y., Yamaoka, K., Hashida, M. and Takakura, Y. (2002) Effect of interferons on P-glycoprotein-mediated rhodamine-123 efflux in cultured rat hepatocytes. J. Pharm. Sci. 91, 2110-2115.   DOI
24 Bauer, B., Hartz, A. M. and Miller, D. S. (2007) Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol. Pharmacol. 71, 667-675.
25 Dixit, S. G., Zingarelli, B., Buckley, D. J., Buckley, A. R. and Pauletti, G. M. (2005) Nitric oxide mediates increased P-glycoprotein activity in interferon-{gamma}-stimulated human intestinal cells. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G533-G540.
26 Belliard, A. M., Lacour, B., Farinotti, R. and Leroy, C. (2004) Effect of tumor necrosis factor-alpha and interferon-gamma on intestinal Pglycoprotein expression, activity, and localization in Caco-2 cells. J. Pharm. Sci. 93, 1524-1536.   DOI
27 Cheshire, J. L. and Baldwin, A. S. Jr. (1997) Synergistic activation of NF-kappaB by tumor necrosis factor alpha and gamma interferon via enhanced I kappaB alpha degradation and de novo I kappaB-beta degradation. Mol. Cell Biol. 17, 6746-6754.
28 Cornford, E. M. (1985) The blood /brain barrier, a dynamic regulatory interface. Mol. Physiol. 7, 219-259.
29 Gijbels, K., Van Damme, J., Proost, P., Put, W., Carton, H. and Billiau, A. (1990) Interleukin 6 production in the central nervous system during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 20, 233-235.   DOI
30 Hao, X. R., Cao, D. L., Hu, Y. W., Li, X. X., Liu, X. H., Xiao, J., Liao, D. F., Xiang, J. and Tang, C. K. (2009) IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis 203, 417-428.   DOI