• Title/Summary/Keyword: Cylindrical shape

Search Result 636, Processing Time 0.031 seconds

Control of Taper Shape in Micro-Hole Machining by Micro-EDM (방전 가공을 이용한 미세 구멍 가공 시 발생하는 테이퍼 형상의 제어)

  • Kim Dong Jun;Yi Sang Min;Lee Young Soo;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.52-59
    • /
    • 2005
  • When a micro hole is machined by EDM with a cylindrical electrode, the hole diameter is different at the inlet and the outlet of the micro hole. The taper shape of the micro hole is caused by not only wear of the electrode but the eroded particles. The eroded particles cause secondary discharge during machining the micro hole. As a result, the diameter of the inlet becomes larger than that of the outlet. In this paper, a new method is proposed to reduce the difference in diameter between the inlet and the outlet of the hole. Observed was that the feed depth and machining time affect the formation of taper shape On this experimental basis, ultrasonic vibration was applied to reduce machining time, and capacitance was changed during machining to use the difference in discharging energy of different capacitances. Using the proposed method, a straight micro-hole was fabricated.

Upper Bound Analysis for Near-net Shape Forging of a Crown Gear Form

  • Lee, Seung-Dong;Kim, Won-Il;Kim, Yohng-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.94-104
    • /
    • 2000
  • A kinematically admissible velocity field for near-net shape forging of a crown gear form is proposed. This takes into account the profiled shape of the teeth chosen by approximating these kinematically as radially straight taper teeth, (rectangular and trapezoidal teeth). The upper bound to the forging load, the relative forging pressure and the deformed configurations, with both the initially solid circular cylindrical and hollow billets, are predicted using the velocity field at varying incremental punch movements considering differing frictional factors. These and other results are given and commented upon.

  • PDF

Effect of Piston Shape on the Lubrication Characteristics of Hydraulic Piston Pump and Motor (피스톤 형상이 유압피스톤 펌프$cdot$모터의 윤활특성에 미치는 영향)

  • 이정오;박태조
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.47-53
    • /
    • 1994
  • Thin film flow in the clearance between cylinder bore and axially moving compositeshape piston is analyzed to study the effect of piston shape on the lubrication characteristics of hydraulic piston pump and motor. It is shown that the piston shape significantly affect the distribution of fluid film pressure, lateral force acting on the piston and leakage flow rate in the clearance. And it is also shown that the composite-shape piston is more effective than the cylindrical piston under tilted condition to reduce the possibility of hydraulic locking. Therefore, the results of present study can be used usefully in the design-and manufacturing of hydraulic piston pump and motor.

Design and Optimization of TG-CVI Heater (TG-CVI용 히터 형상설계 및 최적화)

  • 이성호;홍성석;구형회
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.244-249
    • /
    • 2000
  • Thermal gradient chemical vapor infiltration (TG-CVI) process, which is one of the CVI techniques to densify a porous fiber preform, requires for a heater to have uniform surface temperature distribution. Thus, it is essential to design the shape of the heater and to predict the temperature distribution when the heater has a profile which is not a simple cylinder. In this study, an analytical method has been used to design the inner profile of a conical heater showing uniform temperature distribution, if its outer shape is specified. Temperature distribution on the heater surface has been calculated with the finite difference method and compared with the experimental results. When a heater had a combined profile with a large cone and a small cylinder, temperature was higher in the cylindrical part. To reduce the temperature difference between these areas, a hole-machining method has been proposed including other possible ones. A shape design and optimization program has been made to improve the temperature uniformity of the TG-CVI heater better than that designed with the analytical method.

  • PDF

The Efficiency Prediction for Plate Type Steam Reformer with Shape Change of Combustion Chamber (평판형 STR의 연소공간 형상변화에 따른 성능 예측)

  • Kim, Hun-Ju;Lee, Ji-Hong;Lee, Myeong-Yong;Lee, Sang-Seok;Lee, Do-Hyung
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.4
    • /
    • pp.286-294
    • /
    • 2010
  • According to the propagation of fuel cell system, the importance of that system efficiency is being magnified. Thus, the efficiency improvement of reformer which is the important part of fuel cell system will be required. In structural aspect, the reformer is classified into cylindrical and plate type. Plate type reformer features better maintenance and space efficiency compared with cylindrical type. In this study, we changed the shape of combustion chamber to improve the reforming efficiency. And then we performed the CFD simulation to predict the spacial distribution of temperature. Analysis cased contains with baffles, fins, baffles and fins, and without those. In case of only with-baffle, temperature distributions were uneven because the high temperature stream was concentrated near the baffle end. In case of with-fin, the temperature distributions were relatively even than other cases.

A Development of a Shape Optimization Design Techniques for the Diagrid Tapered Tall-Building (테이퍼드 다이아그리드 초고층 구조물의 형상 최적설계기법 개발)

  • Han, Sang-Eul;Lee, Han-Joo;Ryu, Jong-Hye;Jeong, So-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • In this paper, the optimal diagrid angle of atypical tall buildings has been found using diagrid optimization technique which is based on parametric algorithm. A diagrid is a diagonal grid which can be seen among atypical tall buildings and structures which effectively resist horizontal and vertical direction loads. Therefore, it is also the objective of this studyto find the maximum stiffness of atypical tall buildings by optimizing diagrid angle. Moreover, this study touches on both cylindrical and tapered off cylindrical structures, as shown in the examples to check the compatibility of optimum diagrid angle, which effectively resists horizontal deformation on top by optimization algorithm.

A Study on Improving The Coefficient of Utilization of Material in Deep Drawing Process (딥드로잉공정에서의 재료 수율 향상에 관한 연구)

  • Ha, Jong-Ho;Kang, Hyung-Sun;Baik, Ho-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.509-516
    • /
    • 2009
  • This paper is the study on improving the coefficient of utilization of material in deep drawing process. Cylindrical cup drawing process is widely used in sheet metal forming process. The blank shape is one of the important things in sheet metal forming process. It is produced for the bridge of blank in a blanking process. The coefficient of utilization of material is much effected by this bridge of blank. This study offered a new process method to reduce the loss of material. The new blank shape offered and manufactured by new process method is investigated by a finite element method and the experiment. Then the wrinkling, the punch load, the thickness distribution is observed. This result is different from the result of circular blank process. And it is got that the Max strain, the wrinkle and the height of the wrinkle are effected by the holding force and the punch load. As a result, if the processing optimum condition is found, the loss of material will be reduced. It is necessary to research systematically about determining the optimum value of process variables.

A Study on Improving The Coefficient of Utilization of Material in Deep Drawing Process (딥드로잉 공정에서 재료 이용률을 높이기 위한 연구)

  • Lee, Kyung-Won;Ban, Jae-Sam;Park, Young-Jin;Cho, Kyu-Zong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.179-186
    • /
    • 2002
  • This paper is the study on improving the coefficient of utilization of material in deep drawing process. Cylindrical cup drawing process is widely used in sheet metal forming process. The blank shape is one of the important things in sheet metal forming process. It is produced for the bridge of blank in a blanking process. The coefficient of utilization of material is much effected by this bridge of blank. This study offered a new process method to reduce the loss of material. The new blank shape offered and manufactured by new process method is investigated by a finite element method and the experiment. Then the wrinkling, the punch load, the thickness distribution is observed. This result is different from the result of circular blank process. And it is got that the Max strain, the wrinkle and the height of the wrinkle are effected by the holding farce and the punch load. As a result. if the processing optimum condition is found, the loss of material will be reduced. It is necessary to research systematically about determining the optimum vague of process variables.

SAXS and AFM Study on Porous Silicon Prepared by Anodic Etching in HF-based Solution (SAXS와 AFM에 의한 HF-용액내 양극 에칭에 의해 제조된 기공성 실리콘의 구조연구)

  • Kim, Eu-gene;Kim, Hwa-Joong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1218-1223
    • /
    • 2004
  • Porous silicon materials have been shown to have bright prospects for applications in light emitting, solar cell, as well as light- and chemical-sensing devices. In this report, structures of porous silicon prepared by anodic etching in HF-based solution with various etching times were studied in detail by Atomic Force Microscopy and Small Angle X -ray Scattering technique using the high energy beam line at Pohang Light Source in Korea. The results showed the coexistence of the various pores with nanometer and submicrometer scales. For nanameter size pores, the mixed ones with two different shapes were identified: the larger ones in cylindrical shape and the smaller ones in spherical shape. Volume fractions of the cylindrical and the spherical pores were about equal and remained unchanged at all etching times investigated. On the whole uniform values of the specific surface area and of the size parameters of the pores were observed except for the larger specific surface area for the sample with the short etching time. The results implies that etching process causes the inner surfaces to become smoother while new pores are being generated. In all SAXS data at large Q vectors, Porod slope of -4 was observed, which supports the fact that the pores have smooth surfaces.

Evaluation of an Air-jet and Roller Type Corn-husker (공기분사 및 회전 롤러를 이용한 옥수수 포엽 제거장치의 시험)

  • Park, Hoe-Man;Cho, Kwang-Hwan;Hong, Seong-Gi;Lee, Sun-Ho
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.163-168
    • /
    • 2010
  • With income growth and "well-being" trends, sales of corn has been increased recently. Corns are processed at processing facilities on the main production site. Corn processing steps include removing bract, steaming, vacuum packing, and storing. To replace manual corn bract removing, some bract removing machines were imported and used. However, the machines were abandoned shortly, because of high damaging ratio of corns. In this research, factors of successful bract removing was studied with rotating rollers and air-injection nozzles to develop corn bract removing system. The test device was composed of a cylindrical roller, an air spray nozzle, a regulator, and a motor. Designing factors were roller type, diameter of air spraying nozzle, spraying angle, and spraying pressure. The measured factors were bract removing rate and damaging rate. It was found that optimum cylindrical roller surface shape was cylindrical roller and linear grove roller. This roller shape produced lowest damaging rate. Test results of the efficacy of preprocessing showed that the air spraying after preprocessing produced highest performance. The rotational speed and inclination of the roller didn't affect the bract removing performance. Optimum injection angle of the air jet nozzle was $70^{\circ}$. To increase bract removing rate and to reduce corn damage, required injection pressure and injection nozzle diameter were decided to less than 0.4 MPa and 2.5 mm, respectively. More than 3 times of nozzle passing produced good bract removing performance and there were no significant difference between the number of passing times.