• Title/Summary/Keyword: Cylindrical composite structures

Search Result 151, Processing Time 0.022 seconds

A Study on the Design Optimization of Composite cylindrical shells with Vibration, Buckling Strength and Impact Strength Characteristics (복합재료 원통쉘의 진동, 좌굴강도, 충격강도 특성 및 그의 설계최적화에 관한 연구)

  • 이영신;전병희;오재문
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.48-69
    • /
    • 1997
  • The use of advanced composite materials in many engineering structures has steadily increased during the last decade. Advanced composite materials allow the design engineer to tailor the directional stiffness and the strength of materials as required for the structures. Design variables to the design engineer include multiple material systems. ply orientation, ply thickness, stacking sequence and boundary conditions, in addition to overall structural design parameters. Since the vibration and impact strength of composite cylindrical shell is an important consideration for composite structures design, the reliable prediction method and design methodology should be required. In this study, the optimum design of composite cylindrical shell for maximum natural frequency, buckling strength and impact strength are developed by analytic and numerical method. The effect of parameters such as the various composite material orthotropic properties (CFRP, GFRP, KFRP, Al-CFRP hybrid), the stacking sequences, the shell thickness, and the boundary conditions on structural characteristics are studied extensively.

  • PDF

Study on Evaluation Method of Structural Integrity of Cylindrical Composite Lattice Structures (원통형 복합재 격자구조체의 구조안전성 평가 기법 연구)

  • Im, Jae-Moon;Kang, Seung-Gu;Shin, Kwang-Bok;Lee, Sang-Woo
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.338-342
    • /
    • 2017
  • In this paper, evaluation method of structural integrity of cylindrical composite lattice structures was conducted. A finite element analysis was used to evaluate the structural integrity of composite lattice structures. In order to verify the optimal finite element in the evaluation of the structural integrity, finite element models for cylindrical composite lattice structure were generated using beam, shell and solid elements. The results of the finite element analyses with the shell and solid element models showed a good agreement. However, considerable differences were found between the beam element model and the shell and solid models. This occurred because the beam element does not take into account the degradation of the mechanical properties of the non-intersection parts of cylindrical composite lattice structures. It was found that the finite element analysis of evaluation of structural integrity for cylindrical composite lattice structures have to use solid element.

Deflection Analysis of Laminated Composite Cylindrical Shell Structures Based on Micro-Mechanics (마이크로 역학기반 GFRP 원통형 적층 쉘 구조의 변위 해석)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.15-21
    • /
    • 2013
  • This study carried out finite element deflection analysis of cylindrical shell structures made of composite materials, which is based on the micro-mechanical approach for different fiber-volume fractions. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. New results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite shell structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.

Design Optimization of Double-array Bolted Joints in Cylindrical Composite Structures

  • Kim, Myungjun;Kim, Yongha;Kim, Pyeunghwa;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.332-340
    • /
    • 2016
  • A design optimization is performed for the double-bolted joint in cylindrical composite structures by using a simplified analytical method. This method uses failure criteria for the major failure modes of the bolted composite joint. For the double-bolted joint with a zigzag arrangement, it is necessary to consider an interaction effect between the bolt arrays. This paper proposes another failure mode which is determined by angle and distance between two bolts in different arrays and define a failure criterion for the failure mode. The optimal design for the double-bolted joint is carried out by considering the interactive net-tension failure mode. The genetic algorithm (GA) is adopted to determine the optimized parameters; bolt spacing, edge distance, and stacking sequence of the composite laminate. A purpose of the design optimization is to maximize the burst pressure of the cylindrical structures by ensuring structural integrity. Also, a progressive failure analysis (PFA) is performed to verify the results of the optimal design for the double-bolted joint. In PFA, Hashin 3D failure criterion is used to determine the ply that would fail. A stiffness reduction model is then used to reduce the stiffness of the failed ply for the corresponding failure mode.

A Study on Edge Reinforcement Effect of Cylindrical Shells with Composite Laminate (복합적층 원통형 쉘의 단부보강 효과 연구)

  • Son, Byung-Jik;Ji, Hyo-Seon;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • In this study, composite laminate cantilever type cylindrical shells with edge-stiffeners are analyzed. A versatile 4-node flat shell element which is useful for the analysis of shell structures is used. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. Two models by load conditions are considered. Load type A and B are loaded by point load at the free edge and line load respectively. A various parameter examples are presented to obtain proper stiffened length and stiffened thickness of edge-stiffeners. It is shown that the thickness of shell can be reduced minimum 30% by appropriate edge-stiffeners.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

Manufacturing Processes of Cylindrical Composite Lattice Structures using Filament Winding Method (필라멘트 와인딩 공법을 이용한 원통형 복합재 격자구조체 제작 공정)

  • Im, Jaemoon;Shin, Kwangbok;Lee, Sangwoo;Son, Johwa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.835-837
    • /
    • 2017
  • In this paper, manufacturing processes of cylindrical composite lattice structures using filament winding method was described. Cylindrical composite lattice structures were manufactured in accordance with four major steps. Silicon mold of lattice shape was installed on mandrel and then continuous fiber was wound on silicon mold. After winding process, in order to ensure the same thickness for all regions, compression process was done for its intersection parts. Finally, the composite lattice structure was demoulded after curing in oven. It was found that the manufactured cylindrical composites lattice structure had 2.4% of dimensional error compared to the design requirements.

  • PDF

Optimal Lamination Design of Composite Cylinders using an Empirical Ultimate Pressure Load Formula (최종강도 경험식을 이용한 복합재 원통구조의 최적적층 설계)

  • Cho, Yoon Sik;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.316-326
    • /
    • 2019
  • In this paper, a methodology is presented for determining the optimal lamination of composite cylindrical structures subject to hydrostatic pressure. The strength criterion in association with the process of optimal design is the buckling collapse of composite cylinders under hydrostatic pressure loads. An empirical formula expressed in the form of the Merchant-Rankine equation is used to calculate the ultimate strength of filament-wound composite cylinders where genetic algorithm is applied for determining the optimized stacking sequences. It is shown that the optimized lamination provides improved collapse pressure loads. It is concluded that the developed method would be useful for the optimal lamination design of composite cylindrical structures.

The Effect of Fiber Volume Fraction Non-uniformity in Thickness Direction on the Buckling Load of Cylindrical Composite Lattice Structures (두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조 좌굴하중에 미치는 영향)

  • Kong, Seung-Taek;Jeon, Min-Hyeok;Kim, In-Gul;Lee, Sang-Woo
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.129-135
    • /
    • 2021
  • In this paper, in order to examine the effect of fiber volume fraction non-uniformity in thickness direction on the buckling load of cylindrical composite lattice structures, we modified the equation of buckling load of the cylindrical composite lattice structures proposed by Vasiliev. The thickness of each layer of the rib was varied by fiber volume fraction, and material properties were applied differently by using the rule of mixture. Also, we performed linear buckling analysis by varying the structure size, thickness, and average value of the fiber volume fraction of finite element model. Finally, by comparing the calculation results of the buckling load of the equivalent model using the modified buckling load equation and the results of the finite element analysis, we found that the fiber volume fraction non-uniformity in thickness direction can reduce the buckling load of the cylindrical composite lattice structure.

Electric field strength effect on bi-stability of composite thin cylindrical shell with piezoelectric layer

  • Yaopeng Wu;Nan Zheng;Yaohuan Wu;Quan Yang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.571-578
    • /
    • 2024
  • The bistable thin cylindrical shell is developable structure with the ability to transition between its two stable configurations. This structure offers significant potential applications due to its excellent deformability. In this paper, the composite thin cylindrical shell consisting of the composite layer and the piezoelectric layer was investigated. The material and geometric parameters of the shell were found to influence its stable characteristics. The analysis model of the composite thin cylindrical shell incorporating the piezoelectric layer was developed, and the expressions for its strain energy were derived. By applying the minimum energy principle, the impact of the electric field intensity on the bi-stable behaviors of the cylindrical shell was analyzed. The results showed that the shell exhibited the bistability only under the appropriate electric field strength. And the accuracy of the theoretical prediction was verified by simulation experiments. This study provides an important reference for the application of deployable structures.