• Title/Summary/Keyword: Cylindrical Coordinates

Search Result 86, Processing Time 0.021 seconds

Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads

  • Cui, Chunyi;Zhang, Shiping;Chapman, David;Meng, Kun
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.793-803
    • /
    • 2018
  • Based on the theory of porous media, an interaction system of a floating pile and a saturated soil in cylindrical coordinates subjected to vertical harmonic load is presented in this paper. The surrounding soil is separated into two distinct layers. The upper soil layer above the level of pile base is described as a saturated viscoelastic medium and the lower soil layer is idealized as equivalent spring-dashpot elements with complex stiffness. Considering the cylindrically symmetry and the pile-soil compatibility condition of the interaction system, a frequency-domain analytical solution for dynamic impedance of the floating pile embedded in saturated viscoelastic soil is also derived, and reduced to verify it with existing solutions. An extensive parametric analysis has been conducted to reveal the effects of the impedance of the lower soil base, the interaction coefficient and the damping coefficient of the saturated viscoelastic soil layer on the vertical vibration of the pile-soil interaction system. It is shown that the vertical dynamic impedance of the floating pile significantly depends on the real stiffness of the impedance of the lower soil base, but is less sensitive to its dynamic damping variation; the behavior of the pile in poro-visco-elastic soils is totally different with that in single-phase elastic soils due to the existence of pore liquid; the effect of the interaction coefficient of solid and liquid on the pile-soil system is limited.

Acoustic Characteristics of Mufflers with an Extended Inlet and Outlet (입출구가 연장된 동심형 소음기의 음향해석)

  • 이준신
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.503-509
    • /
    • 2002
  • Cylindrical chamber silencers with an extended inlet and outlet are extensively used in many application fields to reduce the propagated noise in ducts. The basic attenuation effectiveness in the low frequency region can be explained by the reactive wave action inside the expansion chamber associated with the geometric configurations of the inlet and outlet locations, and the area expansion of the jacket. In this study. an acoustic analysis is carried out for a concentric extended pipe inserted into a simple expansion chamber. An algebraic equation is derived by using the eigenfunction expansion and orthogonality principle in which the acoustic pressures and particle velocities defined on each subdivided surface are expressed by the separable coordinates. By using the proposed analytical method, transmission losses are predicted for several configurations of the concentric extended systems and they agree very well with experimental results.

Closed-form Expressions of Magnetic Field and Magnetic Gradient Tensor due to a Circular Disk (원판형 이상체에 의한 자력 및 자력 변화율 텐서 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • In case axial symmetrical bodies with varying cross sections such as volcanic conduits and unexploded ordnance (UXO), it is efficient to approximate them by adding the response of thin disks perpendicular to the axis of symmetry. To compute the vector magnetic and magnetic gradient tensor respones by such bodies, it is necessary to derive an analytical expression of the circular disk. Therefore, in this study, we drive closed-form expressions of the vector magnetic and magnetic gradient tensor due to a circular disk. First, the vector magnetic field is obtained from the existing gravity gradient tensor using Poisson's relation where the gravity gradient tensor due to the same disk with a constant density can be transformed into a magnetic field. Then, the magnetic gradient tensor is derived by differentiating the vector magnetic field with respect to the cylindrical coordinates converted from the Cartesian coordinate system. Finally, both the vector magnetic and magnetic gradient tensors are derived using Lipschitz-Hankel type integrals based on the axial symmetry of the circular disk.

Translucency and Color Stability of Various Core Ceramics for All-Ceramic Restoration (전부도재수복물을 위한 수종의 코어 세라믹의 반투명도 및 색 안정성)

  • Oh, Sang-Chun;Lee, Hae-Hyoung;Shin, Mee-Ran;Park, Kwang-Su
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.2
    • /
    • pp.157-170
    • /
    • 2007
  • Purpose: This investigation was designed to determine the translucency and color stability of various core ceramics for all-ceramic restoration using the CIE $L^*a^*b^*$ system. Material and Methods: IPS e.max Press ceramic(Ivoclar-Vivadent, Liechtenstein), $LAVA^{TM}$ All Ceramic(3M-Espe, Germany), Cercon Smart Ceramic(Dentsply, Germany), and Z-match Ceramic(DentAim, Korea) were used for this study. For the specimens of zirconia oxide ceramics, the as-sintered cylindrical blanks($11.0{\times}25.0mm$) were machined into the shape of a disk(0.4, 0.8, 1.5 mm in thickness, 10 mm in diameters) with a diamond grind machine. The IPS e.max Press specimens ($0.8{\times}10mm$) were fabricated using the "lost wax" technique. CIE $L^*a^*b^*$ coordinates and light transmission were recorded for each specimen with a spectrophotometer(CM-2600d, Minolta, Japan). Color differences were calculated using the equation, ${\Delta}E^*ab=[({\Delta}L^*)2+({\Delta}a^*)2+({\Delta}b^*)2]1/2$. Results: The results were obtained as follows: 1. The most translucent group was IPS e.max Press ceramic that is a glass-ceramic, and $Lava^{TM}$ and Z-match ceramic were more translucent than Cercon Smart ceramic in zirconia ceramic group. 2. In the all groups, there was no significant translucent change after 6 times heat-treatments required to make a final restoration. 3. Colored zirconia was showed more yellowish and dark than uncolored zirconia. 4. After heat-pressing, IPS e.max Press ceramic was showed high ${\Delta}E^*ab$ value(4.1 of eM1, 6.8 of eM2) that means to be more whiter than before heat-pressing. However, there was no color change after additive heat treatments for final restoration. 5. In the colored zirconia groups, there was no significant color change after some heat-treatments required to make a final restoration.

A Coupled Analysis of Finite Elements and Boundary Elements for Time Dependent Inelastic Problems (시간의존 비탄성 문제의 유한요소-경계요소 조합에 의한 해석)

  • Kim, Moon Kyum;Huh, Taik Nyung;Jang, Jung Bum;Oh, Se Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.25-34
    • /
    • 1993
  • The long-term behavior, such as in excavation problems of weak medium, can be dealt with by the elasto-viscoplasticity models. In this paper, a combined formulation of elasto-viscoplasticity using boundary elements and finite elements without using internal cells is presented. The domain integral introduced due to the viscoplastic stresses is transformed into a boundary integral applying direct integration in cylindrical coordinates. The results of the developed boundary element analysis are compared with those from the explicit solution and from the finite element analysis. It is observed that the boundary element analysis without internal cells results in some error because of its deficiency in handling the nonlinearity in local stress concentration. Therefore, a coupled analysis of boundary elements and finite elements, in which finite elements are used in the area of stress concentration, is developed. The coupled method is applied to a time dependent inelastic problem with semi-infinite boundaries. It results in reasonable solution compared with other methods where relatively higher degree of freedoms are employed. Thus, it is concluded that the combined analysis may be used for such problems in the effective manner.

  • PDF

Diagonal Magneto-impedance in Cu/Ni80Fe20 Core-Shell Composite Wire (Cu/Ni80Fe20 코어/쉘 복합 와이어에서 대각(Diagnonal) 자기임피던스)

  • Cho, Seong Eon;Goo, Tae Jun;Kim, Dong Young;Yoon, Seok Soo;Lee, Sang Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.129-137
    • /
    • 2015
  • The Cu(radius ra = $95{\mu}m$)/$Ni_{80}Fe_{20}$(outer radius $r_b$ = $120{\mu}m$) core/shell composite wire is fabricated by electrodeposition. The two diagonal components of impedance tensor for the Cu/$Ni_{80}Fe_{20}$ core/shell composite wire in cylindrical coordinates, $Z_{zz}$ and $Z_{{\theta}{\theta}}$, are measured as a function of frequency in 10 kHz~10 MHz and external static magnetic field in 0 Oe~200 Oe. The equations expressing the diagonal $Z_{zz}$ and $Z_{{\theta}{\theta}}$ in terms of diagonal components of complex permeability tensor, ${\mu}^*_{zz}$ and ${\mu}^*_{{\theta}{\theta}}$, are derived from Maxwell's equations. The real and imaginary parts of ${\mu}^*_{zz}$(f) and ${\mu}^*_{{\theta}{\theta}}$(f) spectra are extracted from the measured $Z_{zz}$(f) and $Z_{{\theta}{\theta}}$(f) spectra, respectively. It is presened that the extraction of ${\mu}^*_{zz}$(f) and ${\mu}^*_{{\theta}{\theta}}$(f) spectra from the diagonal impedance spectra can be a versatile tool to investigate dymanic magnetization process in the core/shell composite wire.