• Title/Summary/Keyword: Cylindrical Bending

Search Result 125, Processing Time 0.023 seconds

Critical Buckling Loads of Laminated Composites under Cylindrical Bending (원통형 굽힘을 받는 적층판의 임계좌굴 하중)

  • Lee, Soo-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.28-36
    • /
    • 2007
  • This paper presents critical buckling loads of laminated composites under cylindrical bending. In-plane displacements are assumed to vary exponentially through plate thickness. The accuracy of this theory is examined for symmetric/antisymmetric cross-ply, angle-ply and unsymmetric laminates under cylindrical bending. Analytical solutions are provided to investigate the effect of transverse shear deformation on critical buckling loads of the laminated plates, and the results are compared with those obtained from the first-order shear deformation plate theory and the classical laminated plate theory.

  • PDF

Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs

  • Salami, Sattar Jedari;Boroujerdy, Mostafa Sabzikar;Bazzaz, Ehsan
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.385-395
    • /
    • 2021
  • This research concentrates on the effects of distributions and volume fractions of carbon nanotubes (CNT) on the nonlinear bending behavior of deep cylindrical panels reinforced by functionally graded carbon nanotubes under thermo-mechanical loading, hitherto not reported in the literature. Assuming the effects of shear deformation and moderately high value of the radius-to-side ratio (R/a), based on the first-order shear deformation theory (FSDT) and von Karman type of geometric nonlinearity, the governing system of equations is obtained. The analytical solution of field equations is carried out using the Ritz method together with the Newton-Raphson iterative scheme. The effects of radius-to-side ratio, temperature change, and boundary conditions on the nonlinear response of the functionally graded carbon nanotubes reinforced composite deep cylindrical panel (FG-CNTRC) are investigated. It is concluded that, among the five possible distribution patterns of CNT, FG-V CNTRC deep cylindrical panel is strongest with the highest bending moment and followed by UD, X, O, and Ʌ-ones. Also, considering the present deep cylindrical panel formulation increases the accuracy of the results. Hence, according to the noticeable amount of R/a in FG-CNTRC cylindrical panels, it is mandatory to apply strain-displacement relations of deep cylindrical panels for bending analysis of FG-CNTRC which certainly is desirable for industrial application.

A Study on Characteristics of Bending Deformation in Cylindrical Die (원통형 다이를 이용한 굽힘의 변형특성에 관한 연구)

  • Kim, Yang-Woo;Lee, Dae-Su
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.59-66
    • /
    • 2008
  • This paper has proposed a new parameter to interpret the effects of plastic deformation in bending of strips in cylindrical die and punch. With reference to the parameter, we have provided an insight on the separation between strips and punches, the occurrence of the multi-point bending during the process of deformation, the final shapes of strips, and the springback ratios. Also using the parameter, we have considered the different effects between the bending deformation in the cylindrical die and the bending deformation due to pure bending.

A Comparative Analysis of Anisotropic Thick Cylindrical Shells and Anisotropic Thin Cylindrical Shells by Finite Element Method (유한요소법에 의한 비등방성 두꺼운 원통형 쉘 및 얇은 원통형 쉘의 비교 해석)

  • Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.17-23
    • /
    • 2010
  • This paper is presented for the analysis results of the bending problems of the anisotropic cylindrical shells. In the numerical analysis of various mechanical problems involving complex partial differential equations, Finite element method is used to analyze the governing equations of anisotropic cylindrical shells. Both thin shell theory and thick shell theory are used as the basic governing equations of bending problems in the anisotropic cylindrical shells. The analysis results are compared between the anisotropic thick cylindrical shells and the anisotropic thin cylindrical shells. The results of this study will be contribute to analyze the bending behavior of anisotropic cylindrical shells.

  • PDF

An efficient Galerkin meshfree analysis of shear deformable cylindrical panels

  • Wang, Dongdong;Wu, Youcai
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.339-355
    • /
    • 2008
  • A Galerkin meshfree method is presented for analyzing shear deformable cylindrical panels. Based upon the analogy between the cylindrical panel and the curved beam a pure bending mode for cylindrical panel is rationally constructed. The meshfree approximation employed herein is characterized by an enhanced moving least square or reproducing kernel basis function that can exactly represent the pure bending mode and thus meets the requirement of Kirchhoff mode reproducing condition. The variational form is discretized using the efficient stabilized conforming nodal integration with a smoothed nodal gradient based curvature. The resulting meshfree formulation satisfies the integration constraint for bending exactness. Moreover, it is shown here that the smoothed gradient preserves several desired properties which are valid for the standard gradient obtained by direct differentiation, such as partition of nullity and reproduction of a constant strain field. The efficacy of the proposed approach is demonstrated by two benchmark cylindrical panel examples.

Piezothermoelastic solution for angle-ply laminated plate in cylindrical bending

  • Dube, G.P.;Upadhyay, M.M.;Dumir, P.C.;Kumar, S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.529-542
    • /
    • 1998
  • Generalised plane strain solution is presented for simply supported, angle-ply laminated hybrid plate under cylindrical bending. The arbitrary constants in the general solution of the governing differential equations are obtained from the boundary and interface conditions. The response of hybrid plates to sinusoidal loads is obtained to illustrate the effect of the thickness parameter and the ply-angle. The classical lamination theory and the first order shear deformation theory are also assessed.

Finite Element Inverse Analysis of the Cylindrical Cup Deep Drawing Process Considering Bending History (굽힘이력을 고려한 원형컵 딥드로잉공정의 유한요소역해석)

  • Huh, J.;Yoon, J.H.;Bao, Y.D.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.340-343
    • /
    • 2007
  • This paper introduces a new approach to consider the bending history in finite element inverse analysis of the cylindrical cup drawing. A modified membrane element is adopted to add the bending-unbending energy to the total plastic energy on the bending-unbending region predicted from the geometry of the final shape and tools. The algorithm suggested was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain are compared with those obtained from incremental finite element analysis. The comparison demonstrates the algorithm proposed reduces the difference between the results from inverse analysis and those from incremental analysis when the bending history is considered.

  • PDF

Bending analysis of composite skew cylindrical shell panel

  • Haldar, Salil;Majumder, Aditi;Kalita, Kanak
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • A nine node isoparametric plate bending element is used for bending analysis of laminated composite skew cylindrical shell panels. Both thick and thin shell panels are solved. Rotary inertia and shear deformation are incorporated by considering first order shear deformation theory. The analysis is performed considering shallow shell theory. Both shallow and moderately deep skew cylindrical shells are investigated. Skew cylindrical shell panels having different thickness ratios (h/a), radius to length ratios (R/a), ply angle orientations, number of layers, aspect ratio (b/a), boundary conditions and various loading (concentrated, uniformly distributed, linear varying and doubly sinusoidal varying) conditions are analysed. Various new results are presented.

A Study on the Bending Buckling Behavior of Circular Cylindrical Shells (원통형 쉘의 휨 좌굴 거동에 대한 연구)

  • 정진환;김성도;하지명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.208-215
    • /
    • 1998
  • A stability problems of isotropic shells under pure bending is investigated based on the classical shells theory. The governing equations of stability problem presented by Donnell and Love, are developed and the solutions for the cylindrical shells are obtained by using Galerkin method. Bending moment is applied at the ends of the cylindrical shell as a from of distributed load in the shape of sine curve. For the isotropic materials, the result of the general purpose structural analysis program based on the finite element method are compared with the critical moment obtained from the classical shell theories. The critical loads for the cylindrical shells with various geometry can not be evaluated with a simple equation. However, accurate solutions for the stability problems of cylindrical shells can be obtained through the equilibrium equation developed in the study.

  • PDF

Levy-type solution for analysis of a magneto-electro-elastic panel

  • Jia He;Xuejiao Zhang;Hong Gong;H. Elhosiny Ali;Elimam Ali
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.719-729
    • /
    • 2023
  • This paper studies electro-magneto-mechanical bending studying of the cylindrical panels based on shear deformation theory. The cylindrical panel is constrained with two simply-supported edges at longitudinal direction and two clamped boundary conditions at circumferential direction. The governing equations are derived based on the principle of virtual work in cylindrical coordinate system. Levy-type solution of the governing equations is derived to reduce two dimensional PDEs to a 2D ODEs. The reduced ordinary differential equation is solved using the Eigen-value Eigen-vector method for the clamped-clamped boundary condition. The electro-magneto-mechanical bending results are obtained to show that every displacement, rotation and electromagnetic potentials how change with changes of initial electromagnetic potentials and mechanical loads along longitudinal and circumferential directions.