• Title/Summary/Keyword: Cyclooxygenase-2, 5-Lipoxygenase

Search Result 59, Processing Time 0.021 seconds

Arachidonic Acid Activates $K^+$-$Cl^-$-cotransport in HepG2 Human Hepatoblastoma Cells

  • Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.401-408
    • /
    • 2009
  • $K^+$-$Cl^-$-cotransport (KCC) has been reported to have various cellular functions, including proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that control the activity of KCC are currently not well understood. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signal in the regulatory mechanism of KCC activity. Exogenous application of AA significantly induced $K^+$ efflux in a dose-dependent manner, which was completely blocked by R-(+)-[2-n-butyl-6,7 -dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1Hinden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activatorinduced $K^+$ efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calciumindependent $PLA_2$ ($iPLA_2$), whereas it was not significantly altered by arachidonyl trifluoromethylketone ($AACOCF_3$) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. NEM increased AA liberation in a doseand time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM-induced ROS generation was significantly reduced by DPI and BEL, whereas $AACOCF_3$ and BPB did not have an influence. The NEM-induced KCC activation and ROS production was not significantly affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and activated the KCC. Collectively, these results suggest that $iPLA_2$-AA signal may be essentially involved in the mechanism of ROS-mediated KCC activation in HepG2 cells.

Saucerneol F, a New Lignan Isolated from Saururus chinensis, Attenuates Degranulation via Phospholipase Cγ1 Inhibition and Eicosanoid Generation by Suppressing MAP Kinases in Mast Cells

  • Lu, Yue;Son, Jong-Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.526-531
    • /
    • 2012
  • During our on-going studies to identify bioactive compounds in medicinal herbs, we found that saucerneol F (SF), a naturally occurring sesquilignan isolated from Saururus chinensis (S. chinensis), showed in vitro anti-inflammatory activity. In this study, we examined the effects of SF on the generation of 5-lipoxygenase (5-LO) dependent leukotriene $C_4$ ($LTC_4$), cyclooxygenase-2 (COX-2) dependent prostaglandin $D_2$ ($PGD_2$), and on phospholipase $C{\gamma}1$ ($PLC{\gamma}1$)-mediated degranulation in SCF-induced mouse bone marrow-derived mast cells (BMMCs). SF inhibited eicosanoid ($PGD_2$ and $LTC_4$) generation and degranulation dose-dependently. To identify the molecular mechanisms underlying the inhibition of eicosanoid generation and degranulation by SF, we examined the effects of SF on the phosphorylation of $PLC{\gamma}1$, intracellular $Ca^{2+}$ influx, the translocation of cytosolic phospholipase $A_2$ ($cPLA_2$) and 5-LO, and on the phosphorylation of MAP kinases (MAPKs). SF was found to reduce intracellular $Ca^{2+}$ influx by inhibiting $PLC{\gamma}1$ phosphorylation and suppressing the nuclear translocations of $cPLA_2$ and 5-LO via the phosphorylations of MAPKs, including extracellular signal-regulated protein kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Taken together, these results suggest that SF may be useful for regulating mast cell-mediated inflammatory responses by inhibiting degranulation and eicosanoid generation.

In vitro Antioxidant, Anti-allergic and Anti-inflammatory Effects of Ethanol Extracts from Korean Sweet Potato Leaves and Stalks (한국산 고구마잎과 고구마줄기 에탄올 추출물의 in vitro 항산화, 항알레르기 및 항염증효과)

  • Kwak, Chung Shil;Lee, Kun Jong;Chang, Jin Hee;Park, June Hee;Cho, Ji Hyun;Park, Ji Ho;Kim, Kyung Me;Lee, Mee Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.369-377
    • /
    • 2013
  • In order to increase the utilization of sweet potato leaves and stalks as much as roots, it is necessary to study their beneficial potential. In this study, the antioxidant, antiallergic and anti-inflammatory effects of sweet potato leaves and stalks were evaluated by measuring total polyphenol and flavonoid contents, DPPH radical scavenging effects, the reducing power and inhibition effects on xanthine oxidase (XO), 5-lipoxygenase (LOX), and cyclo-oxygenase (COX)-2 activities. Blanched sweet potato leaves (SL), raw whole purple stalks (ST) and peeled stalks (PST) were freeze-dried and extracted with 95% ethanol. Total polyphenol content was highest in SL (11.03 mg/g), followed by ST (0.87 mg/g), and PST (0.37 mg/g). Total flavonoid content was highest for SL (9.01 mg/g), followed by ST (0.50 mg/g) and PST (0.25 mg/g). The $IC_{50}$ for DPPH radical scavenging effects was highest for SL ($43.6{\mu}g/mL$), followed by ST ($308.4{\mu}g/mL$) and PST ($1,631.3{\mu}g/mL$). The reducing power was highest for SL ($59.72{\mu}g$ ascorbic acid eq./mL), followed by ST ($12.56{\mu}g$ ascorbic acid eq./mL) and PST ($2.18{\mu}g$ ascorbic acid eq./mL) with $1,000{\mu}g/mL$ of ethanol extract. The inhibition rate on XO activity was highest for SL (13.06%), followed by ST (5.05%) and PST (0.0%) at $250{\mu}g/mL$ extract treatment. The inhibition rate on COX-2 activity was highest for SL (55.34%), followed by ST (2.18%) and PST (0.0%) at $250{\mu}g/mL$ extract treatment. The inhibition rate on 5-LOX activity was highest for SL (91.16%), followed by ST (33.38%) and PST (14.93%) at $50{\mu}g/mL$ treatment. Taken together, sweet potato leaves showed high antioxidative, anti-allergic and anti-inflammatory activities, especially with very strong inhibition effects on 5-LOX activity. These beneficial effects of sweet potato leaves might be mainly caused by the high content of polyphenols and flavonoids.

Antioxidative and Antiallergic Effect of Persimmon Leaf Extracts (감잎(Diospyros kaki Thunb) 추출물의 항산화 및 항알레르기 효과)

  • Yoo, Ki-Hwan;Jeong, Jong-Moon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.12
    • /
    • pp.1691-1698
    • /
    • 2009
  • The purpose of this study was to investigate the antioxidative and antiallergic effects of persimmon leaf extract. Antioxidative and anti-inflammatory effects of the crude persimmon leaf extract (PLE) and the partially purified persimmon leaf extract (PPLE) were determined in in vitro assays by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion radicals, and 5-lipoxygenase (5-LO) and cyclooxygenase (COX). Total phenols and total flavonoid levels of PLE and PPLE were $230.0{\pm}19.6$ mg/g and $475.5{\pm}38.7$ mg/g, and $34.8{\pm}6.5$ mg/g and $78.8{\pm}3.6$ mg/g, respectively. DPPH and superoxide radical-scavenging activities ($SC_{50}$) of the PLE and PPLE were $23.8{\pm}3.2$ ppm and $10.0{\pm}1.3$ ppm, and $47.6{\pm}3.4$ ppm and $22.4{\pm}3.3$ ppm, respectively. Inhibitory activities ($IC_{50}$) of PLE and PPLE against 5-LO, COX-1 and COX-2 were $77.1{\pm}11.7$, $38.6{\pm}7.0$ ppm, $47.4{\pm}7.7$, $25.3{\pm}6.3$ ppm, and $129.5{\pm}5.5$, $84.5{\pm}2.3$ ppm, respectively. Moreover, two extracts inhibited dose-dependently NO production in LPS-stimulated RAW 264.7 cells, and also effectively inhibited the cutaneous anaphylaxis reaction activated by anti-dinitrophenyl IgE antibody in mice. These results suggest that PLE and PPLE may be useful for phytochemical materials for prevention and treatment of radical-mediated pathological and allergy diseases.

Anti-osteoarthritic effects of a combination of pomegranate concentrate powder, Eucommiae cortex and Achyranthis radix in rats

  • Choi, Beom-Rak;Ku, Sae-Kwang;Kang, Su-Jin;Park, Hye-Rim;Sung, Mi-Sun;Lee, Young-Joon;Park, Ki-Moon
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.86-113
    • /
    • 2018
  • Objectives: We examined the effects of a mixed formula consisting of dried pomegranate concentrate powder (PCP) and the aqueous extracts of Eucommiae cortex (EC) and Achyranthis radix (AR) in rats with surgically induced osteoarthritis (OA). Methods: Two weeks after OA-inducing surgery, a PCP:EC:AR 5:4:1 (g/g) combination or single formula was orally administered. Changes in body weight, knee thickness, maximum knee extension angle, bone mineral density of the knee joints, femoral and tibial articular surfaces, and compressive strength of the femoral and tibial articular cartilage (AC) were assessed, along with the prostaglandin E2 level, 5-lipoxygenase, matrix metalloproteinase (MMP)-2 and MMP-9 activity, and chondrogenic gene mRNA expression in the femoral and tibial AC with the synovial membrane (SM). In addition, the number of cleaved poly(ADP-ribose) polymerase, cyclooxygenase and tumor necrosis factor-${\alpha}$-immunoreactive cells in the femoral and tibial AC with SM were monitored, and the rate of cell proliferation was determined with a 5-bromo-2'-deoxyuridine uptake assay. Results : The signs of surgically induced OA in rats were significantly inhibited by both PCP, EC and AR combined and single formulas. In particular, the combination formula-treated OA model rats showed dose-dependent, significantly increased inhibitory activity against all tested criteria compared with single formula-treated rats. Conclusions: Taken together, our results suggest that the combination formula synergistically increased the anti-OA effects of its components through anti-inflammatory and chondrogenic activity in rats with surgically induced OA. In addition, 200, 100 and 50 mg/kg combination formula treatments showed dose-dependent inhibitory activity against all of the tested criteria.

Curcumin Inhibits the Activation of Immunoglobulin E-Mediated Mast Cells and Passive Systemic Anaphylaxis in Mice by Reducing Serum Eicosanoid and Histamine Levels

  • Li, Xian;Lu, Yue;Jin, Ye;Son, Jong-Keun;Lee, Seung Ho;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • Curcumin is naturally occurring polyphenolic compound found in turmeric and has many pharmacological activities. The present study was undertaken to evaluate anti-allergic inflammatory activity of curcumin, and to investigate its inhibitory mechanisms in immunoglobulin E (IgE)/Ag-induced mouse bone marrow-derived mast cells (BMMCs) and in a mouse model of IgE/Ag-mediated passive systemic anaphylaxis (PSA). Curcumin inhibited cyclooxygenase-2 (COX-2) dependent prostaglandin $D_2$ ($PGD_2$) and 5-lipoxygenase (5-LO) dependent leukotriene $C_4$ ($LTC_4$) generation dose-dependently in BMMCs. To probe the mechanism involved, we assessed the effects of curcumin on the phosphorylation of Syk and its downstream signal molecules. Curcumin inhibited intracellular $Ca^{2+}$ influx via phospholipase $C{\gamma}1$ ($PLC{\gamma}1$) activation and the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear factor-${\kappa}B$ (NF-${\kappa}B$) pathway. Furthermore, the oral administration of curcumin significantly attenuated IgE/Ag-induced PSA, as determined by serum $LTC_4$, $PGD_2$, and histamine levels. Taken together, this study shows that curcumin offers a basis for drug development for the treatment of allergic inflammatory diseases.

Imperatorin Suppresses Degranulation and Eicosanoid Generation in Activated Bone Marrow-Derived Mast Cells

  • Jeong, Kyu-Tae;Lee, Eujin;Park, Na-Young;Kim, Sun-Gun;Park, Hyo-Hyun;Lee, Jiean;Lee, Youn Ju;Lee, Eunkyung
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.421-427
    • /
    • 2015
  • Imperatorin has been known to exert many biological functions including anti-inflammatory activity. In this study, we investigated the inhibitory effects of imperatorin on the production of inflammatory mediators in mouse bone marrow-derived mast cells (BMMC). Imperatorin inhibited degranulation and the generation of eicosanoids (leukotriene $C_4$ ($LTC_4$) and prostaglandin $D_2$ ($PGD_2$) in IgE/antigen (Ag)-stimulated BMMC. To elucidate the molecular mechanism involved in this process, we investigated the effect of imperatorin on intracellular signaling in BMMC. Biochemical analyses of the IgE/Ag-mediated signaling pathway demonstrated that imperatorin dramatically attenuated degranulation and the production of 5-lipoxygenase-dependent $LTC_4$ and cyclooxygenase-2-dependent $PGD_2$ through the inhibition of intracellular calcium influx/phospholipase $C{\gamma}1$, cytosolic phospholipase $A_2$/mitogen-activated protein kinases and/or nuclear factor-${\kappa}B$ pathways in BMMC. These results suggest that the effects of imperatorin on inhibition of degranulation and eicosanoid generation through the suppression of multiple steps of IgE/Ag-mediated signaling pathways would be beneficial for the prevention of allergic inflammation.

Effects of Cyclobuxine D on Carrageenin-induced Pleurisy and Croton Oil-induced Granuloma Pouch in Rats (흰쥐의 Carrageenin 유발 늑막염과 Croton oil 유발 육아종양에 미치는 Cyclobuxine D의 영향)

  • Lee, Jong-Hwoa;Park, Young-Hyun;Cho, Byung-Heon;Kim, Yu-Jae;Kim, Jong-Bae;Kim, Chung-Mok;Kim, Chun-Sook;Cha, Young-Deog;Kim, Young-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.2
    • /
    • pp.151-157
    • /
    • 1987
  • Cyclobuxine D, a steroidal alkaloid, was extracted from Buxus microphylla var. koreana Nakai. The effects of cyclobuxine D on carrageenin-induced pleurisy and croton oil-induced granuloma pouch in rats was investigated and compared with those of aspirin, hydrocortisone ana dexamethasone. Intrapleural injection of 2% carrageenin caused the accumulation of exudate. The rate of plasma exudation, measured by the exuded dye amounts for 20 min in the pleural cavity after intravenous injection of pontamine sky blue, showed a peak at 5 hr. Cyclobuxine D (5, 20 and 50 mg/kg, i.p.) suppressed dose-dependently the accumulation of the pleural exudate and the exudation of dye. Among several methods used for screening and evaluation anti-inflammatory agents, granuloma pouch technic introduced by Hans Selye (Hans seyle, 1953) is considered as a simple and reliable method. An air pocket was produced in the subcutaneous tissue of the interscapular region by injection of 1 ml of 1% croton oil as irritant. Inflammatory exudate accumulated in the pouch during the succeding 14 days. Cyclobuxine D (5 and 20 mg/kg) decreased fluid volume in pouch and weight of pouch wall in granulomatous inflammation.

  • PDF

ATP-Induced Histamine Release Is in Part Related to Phospholipase $A_2$-Mediated Arachidonic Acid Metabolism in Rat Peritoneal Mast Cells

  • Lee, Yun-Hye;Lee, Seung-Jun;Seo, Moo-Hyun;Kim, Chang-Jong;Sim, Sang-Soo
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.552-556
    • /
    • 2001
  • Histamine and arachidonic acid (AA) release was measured using the P2-purinoceptor antaongists, phospholipase $A_2{\;}(PLA_2)$ and cyclooxygenase (COX)/lipoxygenase (LOX) inhibitors to determine whether or not ATP-induced histamine release is associated with arachidonic acid (AA) release in rat peritoneal mast cells. ATP increased histamine release in a dose dependent manner, whereas adenosine did not. PPADS (a selective P2X-purinoceptor antagonist) and suramin (a nonselective P2X,2Y-purinoceptor antagonist) inhibited ATP-induced histamine release in a dose dependent manner. However, RB-2 (a P2Y-purinoceptor antagonist) did not block ATP-induced histamine release. Manoalide and oleyloxyethyl phosphorylcholine (OPC), secretory PLA$_2$ inhibitors, also inhibited ATP-induced histamine release dose-dependently. Both COX inhibitors (ibuprofen and indomethacin) and LOX inhibitors (baicalein and caffeic acid) inhibited ATP-induced histamine in a dose dependent manner. ATP significantly increased [$^3H$]AA release by 54%. PPADS and suramin significantly inhibited ATP-induced [3H]Ph release by 81% and 39%, respectively. ATP-induced histamine release was significantly inhibited by a variety of protein kinase inhibitors, such as bisindolmaleimide, genistein, methyl 2,5-dihydroxycinnamate, W-7 and trifluoperazine. Overall, the results suggest that ATP-induced histamine release is in part related to the PLA2-mediated AA metabolism and P2X-purinoceptors.

  • PDF

Characterization of Deoxypodophyllotoxin Metabolism in Rat Liver Microsomes

  • Lee, Sang-Kyu;Jun, In-Hye;Kang, Mi-Jeong;Jeon, Tae-Won;Kim, Ju-Hyun;Seo, Young-Min;Shin, Sil;Choi, Jae-Ho;Jeong, Hye-Gwang;Lee, Seung-Ho;Jeong, Tae-Cheon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.190-196
    • /
    • 2008
  • Deoxypodophyllotoxin (DPT) is a medicinal herb product isolated from Anthriscus sylvestris. DPT possesses beneficial activities in regulating immediate-type allergic reaction and anti-inflammatory activity through the dual inhibition of cyclooxygenase-2 and 5-lipoxygenase. In the present study, the metabolism of DPT was further characterized in rat liver microsomes isolated from male Sprague Dawley rats. The metabolism of DPT was NADPH-dependent. In addition, when liver microsomes were incubated with SKF-525A, a well-known CYP inhibitor, in the presence of $\beta$-NADPH, the metabolism of DPT was significantly inhibited. Using enriched rat liver microsomes, the anticipated isoforms of cytochrome P450s (CYPs) in the metabolism of DPT were partially characterized. Phenobarbital-induced microsomes increased in the formation of metabolite M1. The metabolite M3 was only produced in the enriched microsomes isolated from dexamethasone-treated rats. The results indicated that the metabolism of DPT would be CYP-dependent and that CYP2B and CYP3A might be important in the metabolism of DPT in rats.