• Title/Summary/Keyword: Cyclooxygenase (COX)

Search Result 1,017, Processing Time 0.032 seconds

Relation between Cyclooxygenase-2 and Polo-like Kinase-1 in Non-Small Cell Lung Cancer (비소세포 폐암에서 Cyclooxygenase-2와 Polo-like Kinase-1의 상관관계)

  • Lee, Kyu-Hwa;Yang, Seok-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.4
    • /
    • pp.303-310
    • /
    • 2009
  • Background: Elevated expression of cyclooxygenase-2 (COX-2) and Polo-like kinase-1 (PLK-1) is observed in a wide variety of cancers. Augmented expression of COX-2 and enhanced production of prostaglandin $E_2(PGE_2)$ are associated with increased tumor cell survival and malignancy; COX-2 has been implicated in the control of human non-small cell lung carcinoma (NSCLC) cell growth. PLK-1 siRNA induced the cell death of lung cancer cells and the systemic administration of PLK-1 siRNA/atelocollagen complex inhibited the growth of lung cancer in a liver metastatic murine model. COX-2 and PLK-1 are involved in proliferation and in cell cycle regulation, and there is a significant correlation between their interaction in prostate carcinoma. Methods: In this study, we investigated the pattern of COX-2 and PLK-1 expression in NSCLC, after treatment with IL-1$\beta$, COX-2 inhibitor and PLK-1 siRNA. Results: Expression of PLK-1 was decreased in A549 COX-2 sense cells, and was increased in A549 COX-2 anti-sense cells. Knock out of PLK-1 expression by PLK-1 siRNA augmented COX-2 expression in A549 and NCl-H157 cells. When A549 and NCI-H157 cells were treated with COX-2 inhibitor on a dose-dependent basis, PLK-1 and COX-2 were reduced. However, when the expression of COX-2 was induced by IL-1$\beta$, the production of PLK-1 decreased. Conclusion: These results demonstrate that COX-2 and PLK-1 are regulated and inhibited by each other in NSCLC, and suggest that these proteins have a reverse relationship in NSCLC.

Cyclooxygenase-2 as a Molecular Target for Cancer Chemopreventive Agents

  • Surh, Young-Joon
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.89-96
    • /
    • 2001
  • Recently, considerable attention has been focused on the role of cyclooxygenase-2 (COX-2) in the carcinogenesis as well as in inflammation. Improperly overexpressed COX-2 has been observed in many types of human cancers and transformed cells in culture. Thus, it is conceivable that targeted inhibition of abnormally or improperly up-regulated COX-2 provides one of the most effective and promising strategies for cancer prevention. A ubiquitous eukaryotic transcription factor, NF-kB is considered to be involved in regulation of COX-2 expression. Furthermore, extracellular-regulated protein kinase and p38 mitogen-activated protein (MAP) kinase appear to be key elements of the intracellular signaling cascades involved in NF-kB activation in response to a wide array of external stimuli. Certain chemopreventive phytochemicals suppress activation of NF-kB by blocking one or more of the MAP kinases, which may contribute to their inhibitory effects on COX-2 induction. One of the plausible mechanisms by which chemopreventive phytochemicals inhibit NF-kB activation involves suppression of degradation of the inhibitory unit I kB, which hampers subsequent translocation of p65, the functionally active subunit of NF-kB.

  • PDF

CELECOXIB INHIBITS PHORBOL ESTER-INDUCED EXPRESSION OF CYCLOOXYGENASE-2 AND ACTIVATION OF ERKl/2 IN MOUSE SKIN IN VIVO

  • Chun, Kyung-Soo;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.137-138
    • /
    • 2001
  • There has been accumulating evidence for the association of inflammatory tissue damage with the process of cancer development. Cyclooxygenase (COX), an important enzyme involved in mediating the inflammation, catalyzes the formation of prostaglandins (PGs) from arachidonic acid. There are two isoforms of COX, designated as COX-l and COX-2. COX-l is a housekeeping enzyme which is constitutively expressed and is thought to be involved in maintaining physiological functions.(omitted)

  • PDF

Melittin-induced Nociceptive Responses are Alleviated by Cyclooxygenase-1 Inhibitor

  • Kim, Joo-Hyun;Shin, Hong-Kee;Lee, Kyung-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2006
  • Melittin-induced pain model has been known to be very useful for the study of pain mechanism. Melittin-induced nociceptive responses are reported to be modulated by the changes in the activity of excitatory amino acid receptor, calcium channel, spinal serotonin receptor and extracellular signaling-regulated kinase. The present study was undertaken to investigate the role of cyclooxygenase (COX) in the melittin-induced nociception. Changes in mechanical threshold, flinchings and paw thickness were measured before and after intraplantar injection of melittin in the rat hind paw. Also studied were the effects of intraperitonealy administered diclofenac (25 mg & 50 mg/kg), piroxicam (10 mg & 20 mg/kg) and meloxicam (10 mg & 20 mg/kg) on the melittin-induced nociceptions. Intraplantar injection of melittin caused marked reduction of mechanical threshold that was dose-dependently attenuated by non-selective COX inhibitor (diclofenac) and selective COX-1 inhibitor (piroxicam), but not by COX-2 inhibitor (meloxicam). Melittin-induced flinchings were strongly suppressed by non-selective COX and COX-1 inhibitor, but not by COX-2 inhibitor. None of the COX inhibitors had inhibitory effects on melittin-induced increase of paw thickness (edema). These experimental findings suggest that COX-1 plays an important role in the melittin-induced nociceptive responses.

Evaluation of Cytotoxicity Effects of Chalcone Epoxide Analogues as a Selective COX-II Inhibitor in the Human Liver Carcinoma Cell Line

  • Makhdoumi, Pouran;Zarghi, Afshin;Daraei, Bahram;Karimi, Gholamreza
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.207-212
    • /
    • 2017
  • Objectives: Study of the mechanisms involved in cancer progression suggests that cyclooxygenase enzymes play an important role in the induction of inflammation, tumor formation, and metastasis of cancer cells. Thus, cyclooxygenase enzymes could be considered for cancer chemotherapy. Among these enzymes, cyclooxygenase 2 (COX-2) is associated with liver carcinogenesis. Various COX-2 inhibitors cause growth inhibition of human hepatocellular carcinoma cells, but many of them act in the COX-2 independent mechanism. Thus, the introduction of selective COX-2 inhibitors is necessary to achieve a clear result. The present study was aimed to determine the growth-inhibitory effects of new analogues of chalcone epoxide as selective COX-2 inhibitors on the human hepatocellular carcinoma (HepG2) cell line. Methods: Estimation of both cell growth and the amount of prostaglandin E2 (PGE2) production were used to study the effect of selective COX-2 inhibitors on the hepatocellular carcinoma cell. Cell growth determination has done by MTT assay in 24 h, 48 h and 72 h, and PGE2 production has estimated by using ELYSA kit in 48 h and 72 h. Results: The results showed growth inhibition of the HepG2 cell line in a concentration and time-dependent manner, as well as a reduction in the formation of PGE2 as a product of COX-2 activity. Among the compounds those analogues with methoxy and hydrogen group showed more inhibitory effect than others. Conclusion: The current in-vitro study indicates that the observed significant growth-inhibitory effect of chalcone-epoxide analogues on the HepG2 cell line may involve COX-dependent mechanisms and the PGE2 pathway parallel to the effect of celecoxib. It can be said that these analogues might be efficient compounds in chemotherapy of COX-2 dependent carcinoma specially preventing and treatment of hepatocellular carcinomas.

Cloning and Expression of the Cyclooxygenase-2 gene in the Rock bream, Oplegnathusfasciatus (돌돔, Oplegnathus fasciatus의 Cyclooxygenase-2 유전자의 cloning 및 발현분석)

  • Jin, Ji Woong;Kim, Do Hyung;Kim, Young Chul;Jeong, Hyun Do
    • Journal of fish pathology
    • /
    • v.26 no.1
    • /
    • pp.19-30
    • /
    • 2013
  • Megalocytivirus is a major fish pathogen in marine aquaculture of Asian countries including Korea. Despite of many species affected by this pathogen, little is known interaction between megalocytivirus and the fish immune system. One of the cyclooxygenase isoforms, named COX-2, is playing an important role in immune regulation, and distinct from COX-1 isoform of constitutive activity. COX-2 enzyme is induced by various inflammatory signals, including injection of lipopolysaccharide or infection by pathogenic agents. We cloned COX-2 gene in rock bream using degenerated primers designed from reported sequences of other fish species in PCR followed with 5'- and 3'-end RACE-PCR. The full length of cDNA of rbCOX2 (rock bream COX-2) gene are 2655 bp and that translates into 609 amino acids. The rbCOX-2 genomic organization are found to span 10 exons separated by 9 introns. We also studied if the experimental infection of rock bream with megalocytivirus could affect the expression of COX-2 gene. When injected with LPS, expression of the COX-2 gene was reached peak level at 1 day post injection and showed 13.10 fold increased level compared with that of control. While, when injected with megalocytivirus, we were not able to find significantly increased COX-2 gene expression different from that of control. Cloned and analyzed COX-2 gene in rock bream will help to understand defence mechanisms in fish after viral infection and will also support the development of the measures for treatment and prevention of viral infection.

Cyclooxygenase-2 Induction in Porphyromonas gingivalis-Infected THP-1 Monocytic Cells

  • Choi, Eun-Kyoung;Oh, Byung-Ho;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.31 no.1
    • /
    • pp.21-26
    • /
    • 2006
  • Periodontopathogens including Porphyromonas gingivalis interact with host periodontal cells and the excessive subsequent host responses contribute a major part to the development of periodontal diseases. Cyclooxygenase(COX)-2-synthesized $PGE_2$ has detrimental activities in terms of periodontal pathogenesis. The present study investigated induction of COX-2 expression by P. gingivalis in human monocytic THP-1 cells. Live P. gingivalis increased expression of COX-2, but not that of COX-1, which was demonstrated at both mRNA and protein levels. Elevated levels of $PGE_2$ were released from P. gingivalis-infected THP-1 cells. Pharma-cological inhibition of p38 mitogen-activated protein kinase(MAPK) and extracellular signal-regulated kinase(ERK) substantially attenuated P. gingivalis-induced COX-2 mRNA expression. Indeed, activation of p38 MAPK and ERK was observed in P. gingivalis-infected THP-1 cells. Also, P. gingivalis induced activation of nuclear $factor-{\kappa}B\;(NF-{\kappa}B)$ which is an important transcription factor for COX-2. These results suggest that COX-2 expression is up regulated in P. gingivalis-infected monocytic cells, at least in part, via p38 MAPK, ERK, and $NF-{\kappa}B$.

Expression of Cyclooxygenase-2 (COX-2) in Colorectal Adenocarcinoma: an Immunohistochemical and Histopathological Study

  • Mahmoud, Abla Sayed;Umair, Ayesha;Azzeghaiby, Saleh Nasser;Alqahtani, Fahad Hussain;Hanouneh, Salah;Tarakji, Bassel
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6787-6790
    • /
    • 2014
  • Background: The aim of this study was to evaluate cyclooxygenase-2 (COX-2) immunoreactivity in colorectal adenocarcinomas and to find correlations with different pathological features. Materials and Methods: This study included 35 cases of colorectal carcinoma foir which surgical colectomy specimens were collected. Immunohistochemical staining of COX-2 (cyclooxygenase-2) is done by using the Streptavidin-biotin technique. Results: This work reveals that COX-2 is positive in most cases of colorectal carcinoma and negative in normal colon tissue with statistically non significant relations between COX-2 immunostaining and different pathological features. Conclusions: Our data suggest over expression of COX-2 protein in colorectal carcinoma in contrast to normal mucosa, with a possible role in cell proliferation in carcinogenesis.

Screening of Cyclooxygenase-2 (COX-2) Inhibitors from Natural Products (천연물로부터 사이클로옥시게나제-2 저해제 검색)

  • Moon, Tae-Chul;Chung, Kyu-Charn;Son, Kun-Ho;Kim, Hyun-Pyo;Kang, Sam-Sik;Chang, Hyeun-Wook
    • YAKHAK HOEJI
    • /
    • v.42 no.2
    • /
    • pp.214-219
    • /
    • 1998
  • Tissue distributions and association of cyclooxygenase-2 (COX-2) with inflammatory have led us to search for COX-2 selective inhibitors from natural products. Conceptually, COX- 2 selective inhibitors should be expected to retain anti-inflammatory efficacy by inhibition of PGs production while reducing or eliminating the gastric, renal and hemostatic side effects commonly associated with NSAIDs use. Thus, a logical approach to the treatment of inflammatory diseases should involve the inhibitors of COX-2. To develop new COX-2 inhibitors from natural products, two hundred crude drugs were screened by inhibiting PGD2 generation in bone marrow derived mast cells (BMMC). Among them, 6 methanol extracts of crude drugs such as, Bletillae rhizoma, Aconiti kgreani rhizoma, Belamcandae rhizoma, Nelumbinis semen, Gleniae radix, Aurantii immatri pericarpium inhibited more than 85% of BMMC COX-2 activity at a concentration 2.5${\mu}$g/ml.

  • PDF

Anti-inflammatory Effects of Asiaticoside on Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in RAW 264.7 Cell Line (Asiaticoside가 RAW 264,7 세포에서 Inducible nitric oxide synthase와 Cyclooxygenase-2에 미치는 항염증 작용에 관한 연구)

  • 주상섭;배옥남;정진호
    • Toxicological Research
    • /
    • v.19 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • Asiaticoside has been tested for the ability as an anti-inflammatory drug using lipopolysaccharide (LPS)-stimulated macrophage cell line (RAW 264.7 cell). LPS treatment induced dramatically inducible nitric oxide synthase (iNOS) in RAW cells. However, asiaticoside inhibited LPS-stimulated iNOS induction in a concentration-dependent manner. Especially, higher concentrations (>50 $\mu\textrm{M}$) of asiaticoside completely blocked iNOS induction. In addition, LPS-stimulated expression of inducible cyclooxygenase (COX-2) and interleukin-1 $\alpha$ (IL-1 $\alpha$) was inhibited by asiaticoside treatment. Asiaticoside up to 50 $\mu\textrm{M}$ still required to inhibit COX-2 and IL-1 $\alpha$ induced by LPS. Consistent with these findings, treatment with asiaticoside suppressed do novo synthesis and cellular accumulation of prostaglandin $E_2$ to a lesser extent, suggesting that asiaticoside blocked the induction as well as the activity of COX-2 These results suggest the possibility that asiaticoside may be effective therapeutic agents for septic shock and other inflammatory diseases.