• Title/Summary/Keyword: Cyclin E1

Search Result 171, Processing Time 0.03 seconds

Identification of Genes Associated with Fumonisin Biosynthesis in Fusarium verticillioides via Proteomics and Quantitative Real-Time PCR

  • Choi, Yoon-E.;Shim, Won-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.648-657
    • /
    • 2008
  • In this study, we used functional genomic strategies, proteomics and quantitative real-time (qRT)-PCR, to advance our understanding of genes associated with fumonisin production in the fungus Fusarium verticillioides. Earlier studies have demonstrated that deletion of the FCC1 gene, which encodes a C-type cyclin, leads to a drastic reduction in fumonisin production and conidiation in the mutant strain (FT536). The premise of our research was that comparative analysis of F. verticillioides wild-type and FT536 proteomes will reveal putative proteins, and ultimately corresponding genes, that are important for fumonisin biosynthesis. We isolated proteins that were significantly upregulated in either the wild type or FT536 via two-dimensional polyacrylamide gel electrophoresis, and subsequently obtained sequences by mass spectrometry. Homologs of identified proteins, e.g., carboxypeptidase, laccase, and nitrogen metabolite repression protein, are known to have functions involved in fungal secondary metabolism and development. We also identified gene sequences corresponding to the selected proteins and investigated their transcriptional profiles via quantitative real-time (qRT)-PCR in order to identify genes that show concomitant expression patterns during fumonisin biosynthesis. These genes can be selected as targets for functional analysis to further verify their roles in $FB_1$ biosynthesis.

The Hair Growth Effects of Wheat Bran (밀기울의 모발 성장 효과)

  • Kang, Jung-Il;Moon, Jungsun;Kim, Eun-Ji;Lee, Young-Ki;Koh, Young-Sang;Yoo, Eun-Sook;Kang, Hee-Kyoung;Yim, Dongsool
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • This study was conducted to evaluate the effect of wheat bran on the promotion of hair growth. When rat vibrissa follicles were treated with n-hexane fraction of wheat bran, the hair-fiber lengths of the vibrissa follicles significantly increased. Moreover, n-hexane fraction of wheat bran was found to significantly induce the telogen-anagen transition in C57BL/6 mice. The fraction increased the proliferation of immortalized vibrissa dermal papilla cells (DPCs) in a dose dependent manner. To elucidate the molecular mechanisms in relation to proliferation of DPCs by the fraction of wheat bran, we examined the expression of cell cycle proteins and wnt/${\beta}$-catenin signaling components. Western blot analysis revealed that the proliferation of DPC by n-hexane fraction of wheat bran was accompanied by increased the level of cyclin D1, cyclin E, phospho-CDK2 and phospho-pRB. In addition, the fraction of wheat bran increased the level of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-GSK$3{\beta}$. These results suggest that the hair growing potential of wheat bran mediated by proliferation of DPCs via the regulation of cell cycle proteins and Wnt/${\beta}$-catenin signaling.

Pro-Apoptotic Effect of Mori Cortex Radicis in A549 Lung Cancer Cells (상백피가 A549 폐암세포주의 세포사에 미치는 영향)

  • Bae Oh-Sung;Yoo Yeong-Min;Lee Seon-Goo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1563-1567
    • /
    • 2005
  • Mori Cortex Radicis is distributed in Northwestern China, northern Asia, northern Europe, North America, and Korea. This extracts drops sugar in bloods and inhibits cyclic AMP phophodiesterase. In this study, we investigated whether Mori Cortex Radicis would cause apoptotic death of A549 lung cancer cells. To examine the apoptotic effect of Mori Cortex Radicis, cytotoxicity assay, DNA fragmentation analysis, caspase-3 activity assay, and Western blotting for caspase-3, caspase-9 and poly(ADP-ribose) polymerase (PARP) and cytochrome c were performed. Treatment of cells with Mori Cortex Radicis was shown to induce cell death in a dose-dependent manner. DNA fragmentation was made in response to Mori Cortex Radicis. The active fragments of caspase-3, caspase-9 and PARP were almost completely induced and cytochrome c was released following exposure to Mori Cortex Radicis. To elucidate the apoptotic mechanisms, RT-PCR and Western blot analyses for the expression of Bcl-2, Bu and Cox-2 were carried out. Treatment with Mori Cortex Radicis was expressed the reduction of Bcl-2 and Cox-2 and the induction of Bax. Especially p21 and p53 were increased prior to untreated control, while cyclin E and cyclin D1 decreased in the cytosol. These results suggest that the effect Mori Cortex Radicis is associated with the cell cycle arrest and pro-apoptotic cell death in A549 lung cancer cells.

Inhibitory Effect of Bojungbangam-tang Kakambang on Cisplatin-Induced G2/M Phase Arrest in Human Renal Proximal Tubular HK-2 Cells (보정방암탕가감방(保正防癌湯加減方)이 cisplatin으로 유도된 인간 근위세뇨관 HK-2세포의 G2/M phase arrest에 미치는 영향)

  • Park, Sung-Cheul;Lee, Su-Kyung;Yeom, Seung-Ryong;Kwon, Young-Dal;Song, Yung-Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1555-1563
    • /
    • 2007
  • To idenifty effect of Bojungbangam-tang kakambang on Cisplatin-Induced G2/M Phase Arrest in Human Renal Proximal Tubular HK-2 Cells. Cytotoxicity of cisplatin was detected in HK-2 cells and the value of IC50 is about $25\;{\mu}M$. The treatment of cisplatin to HK-2 showed the G2/M phase cell cycle arrest. The ethanol extract of Bojungbangam-tang kakambang (EBTKB), a new herbal prescription composed of ten crude herbs, inhibited cisplatin-induced G2/M phase arrest in HK-2 cells. EBTKB increased G0/G1 peak in cisplatin-treated HK-2 cells. p53, p21 and p27 expression were increased in cisplatin-treated HK-2 cells. Inhibitory effect of EBTKB on cisplatin-induced G2/M phase arrest was accomplished through inhibition of p53, p21 and p27 expression. Also, reduced CDK2 and cyclin A expression by cisplatin were increased by EBTKB, but cyclin E was not changed. Reduction of ERK activation and increment of p38 activation by cisplatin were increased ERK activation and decreased p38 activation by EBTKB. Cisplatin had no effect on JNK activation, but EBTKB increased JNK activation. These results can suggest that EBTKB inhibits cisplatin-induced G2/M phase arrest in HK-2 cell through reduction of p53-dependent p21 and p27 protein, ERK activation and p38 inactivation.

Modification of ERα by UFM1 Increases Its Stability and Transactivity for Breast Cancer Development

  • Yoo, Hee Min;Park, Jong Ho;Kim, Jae Yeon;Chung, Chin Ha
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.425-434
    • /
    • 2022
  • The post-translational modification (e.g., phosphorylation) of estrogen receptor α (ERα) plays a role in controlling the expression and subcellular localization of ERα as well as its sensitivity to hormone response. Here, we show that ERα is also modified by UFM1 and this modification (ufmylation) plays a crucial role in promoting the stability and transactivity of ERα, which in turn promotes breast cancer development. The elevation of ufmylation via the knockdown of UFSP2 (the UFM1-deconjugating enzyme in humans) dramatically increases ERα stability by inhibiting ubiquitination. In contrast, ERα stability is decreased by the prevention of ufmylation via the silencing of UBA5 (the UFM1-activating E1 enzyme). Lys171 and Lys180 of ERα were identified as the major UFM1 acceptor sites, and the replacement of both Lys residues by Arg (2KR mutation) markedly reduced ERα stability. Moreover, the 2KR mutation abrogated the 17β-estradiol-induced transactivity of ERα and the expression of its downstream target genes, including pS2, cyclin D1, and c-Myc; this indicates that ERα ufmylation is required for its transactivation function. In addition, the 2KR mutation prevented anchorage-independent colony formation by MCF7 cells. Most notably, the expression of UFM1 and its conjugating machinery (i.e., UBA5, UFC1, UFL1, and UFBP1) were dramatically upregulated in ERα-positive breast cancer cell lines and tissues. Collectively, these findings implicate a critical role attributed to ERα ufmylation in breast cancer development by ameliorating its stability and transactivity.

The Decreased Expression of Fbxw7 E3 Ligase Mediated by Cancer Upregulated Gene 2 Confers Cancer Stem Cell-like Phenotypes (CUG2 유전자에 의하여 감소된 FBXW7 E3 ligase 발현이 유사-종양줄기세포 표현형을 유도)

  • Yawut, Natpaphan;Kim, Namuk;Budluang, Phatcharaporn;Cho, Il-Rae;Kaowinn, Sirichat;Koh, Sang Seok;Kang, Ho Young;Chung, Young-Hwa
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.271-278
    • /
    • 2022
  • The detailed mechanism by which cancer upregulated gene 2 (CUG2) overexpression induces cancer stem cell-like phenotypes is not fully understood. The downregulation of FBXW7 E3 ligase, a tumor suppressor known for its proteolytic regulation of oncogenic proteins such as cyclin E, c-Myc, Notch, and Yap1, has been frequently reported in several types of tumor tissues, including those in the large intestine, cervix, and stomach. Therefore, we investigated whether FBXW7 is involved in CUG2-induced oncogenesis. In this study, the decreased expression of FBXW7 was examined in human lung adenocarcinoma A549 (A549-CUG2) and human bronchial BEAS-2B cells (BEAS-CUG2) overexpressing CUG2 and compared with control cells stably expressing an empty vector (A549-Vec or BEAS-Vec). Treatment with MG132 (a proteosome inhibitor) prevented the degradation of FBXW7 and Yap1 proteins, which are substrates of the FBXW7 E3 ligase. To address the role of Fbxw7 in the development of cancer stem cell (CSC) phenotypes, we suppressed Fbxw7 protein levels using its siRNA. We observed that decreased levels of FBXW7 enhanced cell migration, invasion, and spheroid size and number in A549-Vec and BEAS-Vec cells. The enforced expression of FBXW7 produced the opposite results in A549-CUG2 and BEAS-CUG2 cells. Furthermore, the downregulation of FBXW7 elevated the activities of EGFR, Akt, and ERK1/2 and upregulated β-catenin, Yap1, and NEK2, while the enforced expression of FBXW7 generated the opposite results. We thus propose that FBXW7 downregulation induced by CUG2 confers CSC-like phenotypes through the upregulation of both the EGFR-ERK1/2 and β-catenin-Yap1-NEK2 signaling pathways.

4-(N-Methyl-N-nitrosamino)-1(3-pyridyl)-1-butanone(NNK) Restored the Cap-dependent Protein Translation Blocked by Rapamycin

  • Kim Jun-Sung;Park Jin Hong;Park Sung-Jin;Kim Hyun Woo;Hua Jin;Cho Hyun Sun;Hwang Soon Kyung;Chang Seung Hee;Tehrani Arash Minai;Cho Myung Haing
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.347-353
    • /
    • 2005
  • Eukaryotic initiation factor 4E (elF4E) is a key element for cap-dependent protein translation controlled by affinity between elF4E and 4E-binding protein 1 (4E-BP1). Rapamycin can also affect protein translation by regulating 4E-BP1 phosphorylation. Tobacco-specific nitrosamine, 4(N-methyl-N-nitrosamino )-1-(3-pyridyl)-1-butanone (NNK) is a strong lung carcinogen, but its precise lung cancer induction mechanism remains unknown. Relative roles of cap-dependent and -independent protein translation in terms of NNK-induced lung carcinogenesis were elucidated using normal human bronchial epithelial cells. NNK concentrations applied in this study did not decrease cell viability. Addition of NNK restored rapamycin-induced decrease of protein synthesis and rapamycin-induced phosphorylation of 4E-BP1, and increased expression levels of mTOR, ERK1/2, p70S6K, and Raf-1 in a concentration-dependent manner. NNK also caused perturbation of normal cell cycle progression. Taken together, NNK might cause toxicity through the combination of restoration of 4E-BP1 phosphorylation and increase of elF4E as well as mTOR protein expression, interruption of Raf1/ERK as well as the cyclin G-associated p53 network. Our data could be applied towards elucidation of the molecular basis for lung cancer treatment.

The Study of anti-cancer mechanism with Cobrotoxin on Human prostatic cancer cell line(PC-3) (전립선 암세포에 대한 Cobrotoxin의 항암(抗癌) 기전(機轉) 연구(硏究))

  • Chae, Sang-jin;Song, Ho-seup
    • Journal of Acupuncture Research
    • /
    • v.22 no.3
    • /
    • pp.169-183
    • /
    • 2005
  • Objective : The purpose of this study was to investigate the anti-caner effect of cobrotoxin on the prostatic cancer cell line (PC-3).The goal of study is to ascertain whether cobrotoxin inhibits tile cell growth and cell cycle of PC-3, or the expression of relative genes and whether the regression of PC-3 cell growth is due to cell death or the expression of gene related to apoptosis. Methods : After the treatment of Pc-3 cells with cobrotoxin, we performed 형광현미경, MTT assay, Western blotting, Flow cytometry, PAGE electrophoresis and Surface plasmon resonance analysis to identify the cell viability, cell death, apoptosis, the changes of cell cycle and the related protein, Adk, MAP kinase. Results : 1. Compared with normal cell, the inhibition of cell growth reduced in proportion with the dose of cobrotoxin(0-16nM) in PC-3. 2. Cell viabilities of 0.1, 1, 4nM cobrotoxin treatment were decreased and those of 8, 16nM were decreased significantly. 3. S phase of cell cycle was decreased at the group of 1, 2, 4, 8, 16nM cobrotoxin, but M phase was increased at 0.1, 1, 2, 4, 8, 16nM cobrotoxin. 4. Cox-2 expression after cobrotoxin was peaked at 12hours and was decreased significantly after 6, 12, 24 hours. 5. The expression of Cdk4 was decreased dose-dependently at 1, 2, 4, 8nM cobrotoxin and was decreased siginificantly at 4, 8nM Cyclin D1 was decreased at 1, 2, 4, 8nM and Cycline E was not changed. Cycline B was decreased at 1, 2, 4, 8nM dose-dependently and was decreased siginificanlty at 2, 4, 8nM. 6. The expression of Akt was decreased at 1, 2, 4, 8nM dose-dependently and was decreased significantly at 2, 4, 8nM. 7. ERK was increased at 1, 2nM and decreased at 4, 8nM, p-ERK was increased at 1, 2, 4 nM, but decreased at 8nM. JNK and p-JNK were increased at 1, 4, 8 nM. p38 was increased at 2nM p-p38 was increased at lnM but decreased significantly at 2, 4, 8nM. 8. The nucli of normal cells were stained round and homogenous in DAPI staining, but those of PC-3 were stained condense and splitted. Apoptosis was increased dose-dependently at 2, 4, 8, 16nM and increased significantly at 2, 4, 8, 16nM. 9. Bax wasn`t changed at 1, 2, 4, 8nM and Bcl-2 was decreased significantly at 1, 2, 4, 8nM. Caspase 3 and 9 weren`t changed at 1, 2, 4nM but were decreased significantly at 8nM. Conclusions : These results indicate that cobrotoxin inhibits the growth of prostate Cancer cells, has anti-cancer effects by inducing apoptosis.

  • PDF

Different Pattern of p27kip1 and p21cip1 Expression Following Ex Vivo Activation of CD8+ T Lymphocytes

  • Kim, Sung-Jin;Lee, Hyeon-Woo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.218-223
    • /
    • 2007
  • T cell proliferation is a pivotal to an effective immune response. Cyclin-dependent kinase (cdk) inhibitor, $p27^{kip1}$ is degraded to initiate T cell expansion. In this study, we show that although the expression of $p27^{kip1}$ protein was down-regulated, that of $p21^{cip1}$, another cdk inhibitor, was up-regulated in $CD8^+$ T cells following in vitro stimulation. Ex vivo gB antigen-stimulation following HSV immunization increased $p21^{cip1}$ positive cells that co-expressed IFN-$\gamma$. Moreover, $p21^{cip1}$ was co-expressed with IFN-${\gamma}$ in E7 antigen-stimulated $CD8^+$ T cells, whereas $p27^{kip1}$ was not. Our findings imply a role of $p21^{cip1}$ proteins in antigen-induced effector $CD8^+$ T cells differentiation in vivo.

Effects of intrauterine growth restriction during late pregnancy on the cell growth, proliferation, and differentiation in ovine fetal thymuses

  • Zi, Yang;Ma, Chi;He, Shan;Yang, Huan;Zhang, Min;Gao, Feng;Liu, Yingchun
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.989-998
    • /
    • 2022
  • Objective: This study investigated the effects of intrauterine growth restriction (IUGR) during late pregnancy on the cell growth, proliferation, and differentiation in ovine fetal thymuses. Methods: Eighteen time-mated Mongolian ewes with singleton fetuses were allocated to three groups at d 90 of pregnancy: restricted group 1 (RG1, 0.18 MJ ME/body weight [BW]0.75/d, n = 6), restricted group 2 (RG2, 0.33 MJ ME/BW0.75/d, n = 6) and control group (CG, ad libitum, 0.67 MJ ME/BW0.75/d, n = 6). Fetuses were recovered at slaughter on d 140. Results: The G0/G1 phase cell number in fetal thymus of the RG1 group was increased but the proliferation index and the expression of proliferating cell nuclear antigen (PCNA) were reduced compared with the CG group (p<0.05). Fetuses in the RG1 group exhibited decreased growth hormone receptor (GHR), insulin-like growth factor 2 receptor (IGF-2R), and their mRNA expressions (p<0.05). For the RG2 fetuses, there were no differences in the proliferation index and PCNA expression (p>0.05), but growth hormone (GH) and the mRNA expression of GHR were lower than those of the CG group (p<0.05). The thymic mRNA expressions of cyclin-dependent protein kinases (CDKs including CDK1, CDK2, and CDK4), CCNE, E2-factors (E2F1, E2F2, and E2F5) were reduced in the RG1 and RG2 groups (p<0.05), and decreased mRNA expressions of E2F4, CCNA, CCNB, and CCND were occurred in the RG1 fetuses (p<0.05). The decreased E-cadherin (E-cad) as a marker for epithelial-mesenchymal transition (EMT) was found in the RG1 and RG2 groups (p<0.05), but the OB-cadherin which is a marker for activated fibroblasts was increased in fetal thymus of the RG1 group (p<0.05). Conclusion: These results indicate that weakened GH/IGF signaling system repressed the cell cycle progression in G0/G1 phase in IUGR fetal thymus, but the switch from reduced E-cad to increased OB-cadherin suggests that transdifferentiation process of EMT associated with fibrogenesis was strengthened. The impaired cell growth, retarded proliferation and modified differentiation were responsible for impaired maturation of IUGR fetal thymus.