• Title/Summary/Keyword: Cyclin $D_1$

Search Result 338, Processing Time 0.029 seconds

Anti-oxidative and Anti-cancer Activities of Ethanol Extract of Litsea populifolia (인체 폐암 세포주 A549에서 Litsea populifolia 추출물의 항산화 및 항암활성 분석)

  • Jin, Soojung;Oh, You Na;Jeong, Hyun Young;Yun, Hee Jung;Park, Jung-ha;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.679-687
    • /
    • 2019
  • Litsea populifolia, a plant species of the Lauraceae family, is widely distributed in the tropical and subtropical areas of Asia. The phylogenetic relationships and botanical characteristics of L. populifolia have been reported; however, its anti-oxidative and anti-cancer activities remain unclear. In this study, we evaluated the anti-oxidative and anti-cancer effects of ethanol extracts of L. populifolia (EELP) together with the molecular mechanism of its anti-cancer activity in human lung adenocarcinoma A549 cells. EELP showed significant anti-oxidative effects with a 50% inhibitory concentration at $11.71{\mu}g/ml$, which was measured by the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. EELP exhibited cytotoxic activity and induced cell cycle arrest at the G1 phase in A549 cells in a dose-dependent manner, whereas EELP did not have the cytotoxic effect on the normal human lung cell line IMR90. Treatment with EELP also resulted in a decreased expression of G1/S transition-related molecules-including cyclin-dependent kinase (CDK) 2, CDK6, cyclin D1, and cyclin E-both for the transcription and translation levels. EELP-induced G1 arrest was associated with the phosphorylation of checkpoint kinase 2 (CHK2), p53, cell division cycle 25 homolog A (CDC25A), and the reduction of CDC25A expression in A549 cells. Collectively, these results suggest that EELP may exert an anti-cancer effect by cell cycle arrest at the G1 phase through both p53-dependent and p53-independent (ATM/CHK2/CDC25A/CDK2) pathways in A549 cells.

Studies on the effect of Betula platyphylla extract on human dermal papilla cell proliferation and its mechanism of action (자작나무 추출물에서 보이는 모유두(HDP) 세포 성장 촉진 효과와 작용 메커니즘 연구)

  • Seunghyun Ahn;Jung Yeon Lee;Eunbi Hong;Jiyun Kim;Won Seok Jeong;Kown Ki Moon;CheongTaek Kim;Jiha Sung;Seyeon Park
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.269-275
    • /
    • 2022
  • Betula platyphylla extract includes various materials which showed biological activity such as terpenoids. For this reason, Betula platyphylla extract has been used to alleviate inflammation. In this study, extract of Betula platyphylla was obtained and purified using several solvents and evaluated whether they showed effect on prevention of hair loss. Cell cytotoxicity assay was performed to investigate the effect of extracts on cell proliferation. Western blotting was performed to observe the changes in expression of several related growth factors such as β-catenin, VEGF, IGF1, and cyclin D. Also, 5-α-reductase activity was measured. The ethyl acetate extract was divided into four partial extracts and named as H3-1, H3-2, H3-3, and H3-4. The H3-2 extract showed proliferation activity of human derma papilla cell and increased the protein expression of several related growth factors such as β-catenin, VEGF, IGF1, and cyclin D, comparable to the effect of Ethyl 3,4,5-Trimethoxy Benzoate (ETB)and Lupeol (LPO). Moreover, we found that the fraction H3 was shown to decrease 5-α-reductase activity while ETB and LPO had no significant effect on 5-α-reductase activity.

Novel SIRT Inhibitor, MHY2256, Induces Cell Cycle Arrest, Apoptosis, and Autophagic Cell Death in HCT116 Human Colorectal Cancer Cells

  • Kim, Min Jeong;Kang, Young Jung;Sung, Bokyung;Jang, Jung Yoon;Ahn, Yu Ra;Oh, Hye Jin;Choi, Heejeong;Choi, Inkyu;Im, Eunok;Moon, Hyung Ryong;Chung, Hae Young;Kim, Nam Deuk
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • We examined the anticancer effects of a novel sirtuin inhibitor, MHY2256, on HCT116 human colorectal cancer cells to investigate its underlying molecular mechanisms. MHY2256 significantly suppressed the activity of sirtuin 1 and expression levels of sirtuin 1/2 and stimulated acetylation of forkhead box O1, which is a target protein of sirtuin 1. Treatment with MHY2256 inhibited the growth of the HCT116 (TP53 wild-type), HT-29 (TP53 mutant), and DLD-1 (TP53 mutant) human colorectal cancer cell lines. In addition, MHY2256 induced G0/G1 phase arrest of the cell cycle progression, which was accompanied by the reduction of cyclin D1 and cyclin E and the decrease of cyclin-dependent kinase 2, cyclin-dependent kinase 4, cyclin-dependent kinase 6, phosphorylated retinoblastoma protein, and E2F transcription factor 1. Apoptosis induction was shown by DNA fragmentation and increase in late apoptosis, which were detected using flow cytometric analysis. MHY2256 downregulated expression levels of procaspase-8, -9, and -3 and led to subsequent poly(ADP-ribose) polymerase cleavage. MHY2256-induced apoptosis was involved in the activation of caspase-8, -9, and -3 and was prevented by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, the autophagic effects of MHY2256 were observed as cytoplasmic vacuolation, green fluorescent protein-light-chain 3 punctate dots, accumulation of acidic vesicular organelles, and upregulated expression level of light-chain 3-II. Taken together, these results suggest that MHY2256 could be a potential novel sirtuin inhibitor for the chemoprevention or treatment of colorectal cancer or both.

Enhanced Anti-tumor Efficacy of Aspirin Combined with Triptolide in Cervical Cancer Cells

  • Chen, Rong-Hui;Tian, Yong-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3041-3044
    • /
    • 2013
  • Background: The non-steroidal anti-inflammatory drug (NSAID) aspirin (acetylsalicylic acid) is an inhibitor of cyclooxygenase enzymes. Recent studies have shown that aspirin could be used as an anti-tumor drug. Triptolide, the major compound extracted from the Chinese herb Tripteryglum wilfordii Hook.f, has now been shown that it can inhibit tumor growth. The aim of this study was to analyze the anti-tumor efficiency of aspirin and triptolide in cervical cancer cells. Methods: Viability of cervical cancer cell lines was assessed by the MTT method at various concentrations of aspirin and triptolide. Siha and HeLa cell apoptotic analysis was performed by flow cytometry. Real time-PCR and Western Blotting were used to analyze the expression of Bcl-2/Bax, Cyclin D1 and p16. Results: Viability in the combination group was significantly decreased as compared with either drug used alone. Expression change of Bcl-2/Bax, CyclinD1 and p16 appeared to play an important role in the synergistic killing effect on cervical cancer cell apoptosis. Conclusion: Aspirin and triptolide combination treatment may have synergistic anti-tumor effects on cervical cancer cells.

Suppression of MCF-7 Human Breast Cancer Cell Proliferation by Globefish Takifugu obscurus Homogenate (복어(Takifugu obscurus) 균질액에 의한 MCF-7 인간 유방암세포 성장 억제 효과)

  • Kim, Junghoon;Kim, Jungho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.878-885
    • /
    • 2020
  • Previously, we reported that globefish Takifugu obscurus homogenate suppresses the growth of human colorectal cancer cells. To extend the applications of globefish homogenate, we investigated its cytotoxic effects on human breast cancer cells. To assess the effects of globefish homogenate on growth of MCF (Michigan Cancer Foundation)-7 human breast cancer cells, cell proliferation and colony formation assays were performed using the cell counting and Crystal Violet staining methods. The 50% inhibitory concentration (IC50) of globefish homogenate on MCF-7 cell proliferation was calculated from the sigmoidal dose-response curve. The colony formation assay demonstrated that MCF-7 cells treated with globefish homogenate formed up to 80% fewer colonies than control MCF-7 cells. Treatment with globefish homogenate markedly suppressed the growth of MCF-7 cells in a dose-dependent manner. The sensitivity of the cells to globefish homogenate was determined by calculating the IC50; in this case, the IC50 was 210 ㎍/mL. Furthermore, significant downregulation of Cyclin D1 expression, along with phospho-Akt and total Akt levels, was observed in MCF-7 cells treated with globefish homogenate. This study demonstrates that treatment with globefish homogenate inhibits the proliferation of MCF-7 human breast cancer cells by downregulating the expression of phosphor-Akt, total Akt, and Cyclin D1 proteins.

HS-146, a novel phosphoinositide 3-kinase α inhibitor, induces the apoptosis and inhibits the metastatic ability of human breast cancer cells

  • Ok Hyeon Kim;Ju-Hee Lee;Shinmee Mah;Sung Yun Park;Sungwoo Hong;Soon-Sun Hong
    • International Journal of Oncology
    • /
    • v.56 no.6
    • /
    • pp.1509-1520
    • /
    • 2020
  • The phosphoinositide 3-kinase (PI3K) signaling pathway plays an important role in human cancer as it regulates critical cellular functions, such as survival, proliferation and metabolism. In the present study, a novel PI3Kα inhibitor (HS-146) was synthesized and its anticancer effects on MCF-7, MDA-MB-231, SKBR3 and BT-474 human breast cancer cell lines were confirmed. HS-146 was found to be most effective in inhibiting the proliferation of MCF-7 cells and in inducing cell cycle arrest in the G0/G1 phase by downregulating cyclin D1, cyclin E, cyclin-dependent kinase (Cdk)2 and Cdk4, and upregulating p21Waf1/Cip1 protein levels in this cell line. The induction of apoptosis by HS-146 was confirmed by DAPI staining and western blot analysis. Cell shrinkage and nuclear condensation, which are typical morphological markers of apoptosis, were increased by HS-146 in the MCF-7 cells in a concentration-dependent manner, and HS-146 also increased the protein expression levels of cleaved poly(ADP-ribose) polymerase (PARP) and decreased the protein expression levels of Mcl-1 and caspase-7. In addition, HS-146 effectively decreased the phosphorylation levels of downstream PI3K effectors, such as Akt, mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β), p70S6K1 and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). Hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) expression were also suppressed by HS-146 under hypoxic conditions, and HS-146 inhibited the migration and invasion of MCF-7 cells in a concentration-dependent manner. On the whole, the findings of the present study suggest that HS-146, a novel PI3Kα inhibitor, may be an effective novel therapeutic candidate that suppresses breast cancer proliferation and metastasis by inhibiting the PI3K/Akt/mTOR pathway.

G1 Arrest of the Cell Cycle by Onchungeum in Human Hepatocarcinoma Cells (온청음(溫淸飮)이 인체 간암세포의 세포주기 G1 Arrest에 미치는 영향)

  • Goo, In-Moo;Shin, Heung-Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.821-828
    • /
    • 2008
  • Onchungeum, a herbal formula, which has been used for treatment of anemia due to bleeding, discharging blood and skin disease. In the present study, it was examined the effects of extract of Onchungeum (OCE) on the growth of human hepatocarcinoma cell lines Hep3B (p53 null type) and HepG2 (p53 wild type) in order to investigate the anti-proliferative mechanism by OCE. Treatment of Hep3B and HepG2 cells to OCE resulted in the growth inhibition in a dose-dependent manner, however Hep3B cell line exhibited a relatively strong anti-proliferative activity to OEC. Flow cytometric analysis revealed that OCE treatment in Hep3B cells caused G1 phase arrest of the cell cycle, which was associated with various morphological changes in a dose-dependent fashion. RT-PCR and immunoblotting data revealed that treatment of OCE caused the down-regulation of cyclin D1 expression, however the levels of cyclin E expression were not changed by OCE. The G1 arrest of the cell cycle was also associated with the induction of Cdk inhibitor p27 by OCE. Because the p53 gene is null in Hep3B cells, it is most likely that the induction of p21 is mediated through a p53-independent pathway. Moreover, p27 detected in anti-Cdk4 and anti-Cdk2 immunoprecipitates from the OCE-treated cells, suggesting that OCE-induced p27 protein blocks Cdk kinase activities by directing binding to the cyclin/Cdk complexes. Furthermore, OCE treatment potently suppresses the phosphorylation of retinoblastoma proteins and the levels of the transcription factor E2F-1 expression. Taken together, these results indicated that the growth inhibitory effect of OCE in Hep3B hepatoma cells was associated with the induction of G1 arrest of the cell cycle through regulation of several major growth regulatory gene products.

Effect of the Physiologically Active Compounds in Phlomidis Radix on Cell Cycle Regulation in Human Gingival Fibroblasts (속단의 생리활성성분이 치은섬유아세포의 세포주기조절에 미치는 영향)

  • You, Suk-Joo;Jang, Kil-Young;Yoon, Ho-Sang;Choi, Ho-Chul;Sung, Ki-Jong;Kim, Hyun-A;Pi, Sung-Hee;Shin, Hyung-Shik;You, Hyung-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.87-98
    • /
    • 2005
  • The purpose of present study was to investigate the effects of physiologically active compound (SD62-122) from Phlomidis Radix on the cell cycle progression and its molecular mechanism in human gingival fibroblasts(HGFs). For this purpose, fibroblasts were isolated and cultured from excisioned gingiva during crown lengthening procedure in healthy adult. The following parameter were evaluated that there are cell number counting, MIT assay, cell cycle progression, western blot analysis. The cell number and MIT assay of primary cultured fibroblast was not increased at 2 days but significant increased compare to negative control at 3days(p<0.05). S phase was increased and G1 phase decreased in both $10^{-8}M$ and $10^{-9}M$ of SD62-122 in cell cycle analysis. The cell cycle regulation protein levels of Cyclin $D_1$, Cyclin E, cdk 2, cdk 4 and cdk 6 were increased compare to control in both $10^{-8}M$ and $10^{-9}M$ of SD62-122. The protein levels of p21 and p53 were decreased compare to control, but the level of pRb was not changed compare to control in $10^{-9}M$ of SD2-122. These results suggested that physiologically active compound (SD62-122) isolated from Phlomidis Radix increases the cell proliferation and cell cycle progression in HGFs, which is linked to increased cell cycle regulation protein levels of Cyclin $D_1$, Cyclin E, cdk 2, cdk 4 and cdk 6, and decreased the levels of p21, p53.

Tumor suppressor $p16^{INK4a}$ in Cancer

  • Lee, Mee-Hyun;Choi, Bu-Young;Surh, Young-Joon
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.3
    • /
    • pp.87-96
    • /
    • 2005
  • [ $p16^{INK4a}$ ] is a tumor suppressor that belongs to the INK4 family of the cyclin D-dependent kinases (cdk) inhibitors. It plays regulatory roles in cell proliferation and in tumorigenesis by interacting with Rb signaling. Abnormally elevated $p16^{INK4a}$ protein expression causes cell cycle arrest (G1/S transition) and loss of cyclin-cdk activity. In many cancers, $p16^{INK4a}$ is altered by mutation, deletion, and promoter methylation. This review summarizes the function of p16 as an important regulator of cancer pathobiology and a promising target fer developing cancer therapeutic and chemopreventive agents.

  • PDF

Effects of dietary spermine supplementation on cell cycle, apoptosis, and amino acid transporters of the thymus and spleen in piglets

  • Cao, Wei;Wu, Xianjian;Jia, Gang;Zhao, Hua;Chen, Xiaoling;Wu, Caimei;Cai, Jingyi;Wang, Jing;Liu, Guangmang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1325-1335
    • /
    • 2018
  • Objective: This study investigated whether spermine supplementation could regulate cell cycle, apoptosis, and amino acid transporter-related genes expression in the thymus and spleen of early weaned piglets. Methods: Eighty female piglets were randomly distributed to receive adequate nutrients supplemented with spermine (0.4 mmol/kg body weight/24 h) or to be provided with restricted nourishment supplemented with normal saline for 7 h or 3, 6, or 9 d in pairs. Results: Regardless of administration time, spermine supplementation significantly up-regulated cyclin A2 gene expression but down-regulated p21 and cyclin D3 mRNA levels in the thymus and spleen and reduced cyclin E2 gene expression in the thymus of piglets (p<0.05). Irrespective of the treatment period, the reduced Bax and caspase-3 gene expressions and improved Bcl-2 mRNA level were observed in the thymus and spleen of spermine-administrated piglets (p<0.05). Regardless of supplementation time, spermine intake significantly enhanced the expressions of amino acid transporter-related genes (SLC1A1, SLC1A5, SLC7A1, SLC7A7, and SLC15A1) in both thymus and spleen, as well as SLC7A9 in the spleen of piglets (p<0.05). In addition, extended spermine administration also markedly promoted cell proliferation, depressed apoptosis and modulated amino acid transport (p<0.05), and such effects were the greatest during prolonged spermine supplementation (6 d) compared to the other time periods (p<0.05). Conclusion: Spermine supplementation may regulate cell cycle during the G1/S phase, suppress apoptosis and modulate amino acid transport. A period of 6 d of spermine supplementation is required to produce the optimal effects on nutritional implications.