• 제목/요약/키워드: Cyclic stress-strain

검색결과 327건 처리시간 0.032초

상대밀도와 반복전단이력의 차이에 의한 모래의 액상화 후 재압축 특성 (Recompression Properties of Sand in Post-Liquefaction Process According to Relative Density and Cyclic Loading History)

  • 권영철
    • 한국지반환경공학회 논문집
    • /
    • 제13권1호
    • /
    • pp.21-29
    • /
    • 2012
  • 액상화에 의한 지반 파괴는 지반 진동이 발생하는 도중은 물론이고 지반 진동이 종료된 이후에도 크게 발생할 가능성이 있다. 이러한 지반 변형 혹은 파괴 과정 중에는 지반 내에서 과잉간극수압의 재분배가 일어나고, 그 결과 시시각각 흙의 유효응력이 변화하게 된다. 따라서 지진 후 배수 과정에서는 전체 배수량의 변화뿐만 아니라 배수과정에서 흙의 유효응력 변화특성이 매우 중요하다고 생각된다. 본 연구의 주요한 목적은 다양한 비배수 전단이력을 모래에 가한 후 발생하는 체적압축특성, 즉 체적변형률과 평균유효응력의 관계를 밝히는 것이다. 본 연구에서는 모래의 상대밀도와 반복전단이력을 변화시켜가면서 반복전단 삼축압축시험을 실시하고 그 결과를 액상화 후의 재압축 특성에 초점을 맞추어 분석하였다. 시험 결과 모든 경우에서 평균유효응력이 0이 되는 영역에서 체적변형률의 발생이 급증하는 패턴을 보였으며 세립분을 포함하고 있는 풍화토가 보다 완만한 패턴을 보이고 있었다. 또한 반복재하에 의한 액상화 후의 압축특성은 누적 손실에너지와 최대전단변형률에 크게 의존하고 있으며 이러한 경향은 상대밀도나 재하이력 및 흙의 종류에 관계없이 동일한 경향으로 나타나고 있음을 알 수 있었다. 특히 세립분을 포함하는 모래에서는 누적 손실에너지와 최대체적변형률의 일정한 추세선을 확인할 수 있었으나, 표준사와 같은 입도가 균등한 흙에서는 팽창 특성에 의해 유효응력이 일시적으로 상승하면서 통일성 있는 관계로 파악하기 어려웠다.

천호산 석회암의 반복하중에 의한 피로파괴거동에 관한 연구 (A Study on the Fatigue Failure Behavior of Cheon-Ho Mt. Limestone Under Cyclic Loading)

  • Lee, Jong-Uk;Rhee, Chan-Goo;Kim, Il-Jung;Kim, Yeong-Seok
    • Nuclear Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.98-109
    • /
    • 1992
  • 본 연구에서는 천호산석회암에 대한 피로파괴 거동을 조사하기 위해“일축압축 반복시험”을 수행하였고, 반복 하중하에서는 하중속도를 760kg/$\textrm{cm}^2$/sec로 적용하여 일정하게 유지시켰다. 또한 암종에 따른 피로거동을 규명하기 위해 Indiana 석회암과 성주사암에 대한 기존의 연구결과와 비교 검토하였다. 피로현상은 파괴에 이르는데 요하는 반복횟수(N)와 최대적용응력(S)과의 관계를 S-N 곡선으로 나타낸다. 암종에 따른 S-N곡선을 비교하기 위해 $10^4$반복횟수까지 식으로 나타내었고, 이 때의 천호산석회암과 성주사암시편의 상관계수(R)는 각각 0.886, 0.983 이다. 3가지 암석시편 모두가 응력 수준이 높을수록 피로수명이 짧은 점을 알 수 있었다 암종별 피로수명은 천호산석회암, Indiana 석회암과 성주사암의 경우에 있어서 각각 응력수준 81.5% 이상, 70% 이상 74.8% 이상에 해당한다고 볼 수 있다. $10^4$회 반복에서도 파괴되지 않은 시편들에 대해 정하중강도를 측정하여 원래의 정하중강도와 비교한 결과, 강도증가율은 천호산석회 암이 약 6.18%, Indiana 석회암의 경우는 10.96% 정도이다. 반복횟수에 따른 포아송비와 체적변형률의 변화를 조사하기 위해 천호산 석회암과 성주사암을 비교한 결과, 두 경우 모두 응력수준이 높을수록 급증하는 경향을 나타내며, 파괴직전부터 급격한 증가추세를 보였다 또한 각 응력수준에 저한 포아송비와 체적변형률에 있어서 1회 반복시와 파괴직전의 반복시를 비교 검토하였다.

  • PDF

DSC구성방정식을 이용한 포화사질토의 액상화 거동 예측 (A Study on Prediction of the Liquefaction Behavior of Saturated Sandy Soils Using DSC Constitutive Equation)

  • 박인준;김수일;정철민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.201-208
    • /
    • 2000
  • In this study, the behavior of saturated sandy soils under dynamic loads - pore water pressure and effective stress - was investigated using Disturbed State Concept(DSC) model. The model parameters are evaluated from laboratory test data. During the process of loading and reverse loading, DSC model is utilized to trace strain-hardening and cyclic softening behavior. The procedure of back prediction proposed in this study are verified by comparing with laboratory test results. From the back prediction of pore water pressure and effective mean pressure under cyclic loading, excess pore water pressure increases up to initial effective confining pressure and effective mean pressure decrease close to zero in good greement with laboratory test results. Those results represent the liquefaction of saturated sandy soils under dynamic loads. The number of cycles at initial liquefaction using the model prediction is in good agreement with laboratory test results. Therefore, the results of this study state that the liquefaction of saturated sandy soils can be explained by the effective tress analysis.

  • PDF

Contribution of modification of a pressuremeter for an effective prediction of soil deformability

  • Aissaoui, Soufyane;Zadjaoui, Abdeldjalil;Reiffsteck, Philippe
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.381-392
    • /
    • 2020
  • The difficulties, challenges and limitations faced in standard pressuremeter testing in the measurement of low soil deformations led a number of researchers to think about the possible modification of the equipment, and especially the replacement of the volumeter by a Hall Effect sensor. This article is a major contribution in this direction. It makes an attempt to detail the design, manufacture and operation of the new equipment. The calibration of the various components was carried out according to the rules presently in force. This proposal was applied, on an exploratory basis, to the data of a real site located in France. The authors present the preliminary results of some cyclic pressuremeter tests, previously carried out in the laboratory, on a sandy material, and they then provide a basic interpretation of these results. The findings indicated that the proposed apparatus is capable of providing high-quality information about constraints and deformations. Although these tests were performed within the laboratory, it was possible to analyze the power, quality, performance and insufficiencies of the proposed equipment.

반복하중을 받는 철근콘크리트 기둥의 비선형 거동 (Nonlinear Behavior of RC Columns Subjected to Cyclic Loadings)

  • 곽효경;김선필
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.475-482
    • /
    • 2002
  • A moment-curvature relationship to simulate the behavior of reinforced concrete (RC) columns under cyclic loading is introduced. Unlike previous moment4curvature models and the layered section approach, the proposed model takes into account the bond-slip effect by using a monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The pinching effect caused by axial force is considered with an assumption that the absorbing energy corresponding to any deformation level maintains constant regardless of the magnitude of applied axial lone. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. Finally, correlation studies between analytical result and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석 (Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship.)

  • 곽효경;김선필
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.190-197
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

반복하중을 받는 RC기둥의 비선형 해석을 위한 모멘트-곡률 관계의 개발 (Nonlinear Analysis of RC Columns under Cyclic Loading Based on Moment-Curvature Relationship)

  • 곽효경;김선필
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.3-11
    • /
    • 2002
  • A moment-curvature relationship to simulate the behavior of reinforced concrete (RC) columns under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the unposed model takes into account the bond-slip effect by using a monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The pinching enact caused by axial force is considered with an assumption that the absorbing energy corresponding to any deformation level maintains constant regardless of the magnitude of applied axial force. The advantages of the proposed model, comparing tn layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures.. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed mood.

  • PDF

내압을 받는 파워스티어링 호스의 유한요소해석 (Finite Element Analysis of Power Steering Hose Subject to Internal Pressure)

  • 조진래;전도형;노기태
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.181-188
    • /
    • 2004
  • The objective of this paper is to numerically examine the mechanical behavior of the swaged power steering(PS) hose subject to internal pressure. PS hose experiences a large internal pressure change in operating, so it's material part has to resist a cyclic expansion and compression without causing oil leakage. This cyclic pressure is intimately associated with fatigue failure of PS hose. In this study, we compare two types of PS hose. The numerical investigation is composed of three steps; swaging analysis, low and high pressure analyses. The comparative numerical results provide the basic data for the optimal PS design.

Investigation of the liquefaction potential of fiber-reinforced sand

  • Sonmezer, Yetis Bulent
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.503-513
    • /
    • 2019
  • In the present, the liquefaction potential of fiber-reinforced sandy soils was investigated through the energy-based approach by conducting a series of strain-controlled cyclic simple shear tests. In the tests, the effects of the fiber properties, such as the fiber content, fiber length, relative density and effective stress, and the test parameters on sandy soil improvement were investigated. The results indicated that the fiber inclusion yields to higher cumulative liquefaction energy values compared to the unreinforced (plain) ground by increasing the number of cycles and shear strength needed for the liquefaction of the soil. This result reveals that the fiber inclusion increases the resistance of the soil to liquefaction. However, the increase in the fiber content was determined to be more effective on the test results compared to the fiber length. Furthermore, the increase in the relative density of the soil increases the efficiency of the fibers on soil strengthening.

23Cr26Ni 내열강의 피로 특성 (Fatigue Behavior of 23Cr26Ni Heat Resistant Steel)

  • 이희웅;권숙인
    • 열처리공학회지
    • /
    • 제24권2호
    • /
    • pp.92-98
    • /
    • 2011
  • The influence of the cooling condition after solution treatment on the high temperature fatigue resistance of 23Cr-26Ni heat resistant steel was investigated. Two different cooling conditions were applied to the steel after solution treatment at $1200^{\circ}C$ for 3 hours. One specimen was water quenched immediately after the solution treatment. The other one was furnace cooled at a rate of $0.5^{\circ}C/min$ down to $750^{\circ}C$ after the solution treatment. Then, both specimens were aged at $750^{\circ}C$ for 5 hours. Under two different heat treatment conditions, the low cycle fatigue (LCF) test was performed at $600^{\circ}C$ and room temperature (RT). Only cyclic hardening continued from the beginning until fracture at all strain amplitudes during LCF at $600^{\circ}C$. This phenomenon was attributed to the increase in the dislocation density due to cyclic deformation, which resulted in the interaction between the newly created dislocations and precipitates. Cyclic hardening followed by saturation and cyclic softening was observed at RT. Cyclic softening was attributed to the dislocation annihilation rate exceeding the dislocation generation rate. Other probable factor for cyclic softening was some cavities formed around grain boundaries after 20 cycles. WQ and FC have a similar LCF behavior at RT and $600^{\circ}C$ as shown in the cyclic stress response curves.