• Title/Summary/Keyword: Cyclic signal

Search Result 185, Processing Time 0.024 seconds

Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract

  • Lee, Jeong-Oog;Kim, Eunji;Kim, Ji Hye;Hong, Yo Han;Kim, Han Gyung;Jeong, Deok;Kim, Juewon;Kim, Su Hwan;Park, Chanwoong;Seo, Dae Bang;Son, Young-Jin;Han, Sang Yun;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.389-399
    • /
    • 2018
  • Background: The antioxidant effects of Panax ginseng have been reported in several articles; however, little is known about the antimelanogenesis effect, skin-protective effect, and cellular mechanism of Panax ginseng, especially of P. ginseng calyx. To understand how an ethanol extract of P. ginseng berry calyx (Pg-C-EE) exerts skin-protective effects, we studied its activities in activated melanocytes and reactive oxygen species (ROS)-induced keratinocytes. Methods: To confirm the antimelanogenesis effect of Pg-C-EE, we analyzed melanin synthesis and secretion and messenger RNA and protein expression levels of related genes. Ultraviolet B (UVB) and hydrogen peroxide ($H_2O_2$) were used to induce cell damage by ROS generation. To examine whether this damage is inhibited by Pg-C-EE, we performed cell viability assays and gene expression and transcriptional activation analyses. Results: Pg-C-EE inhibited melanin synthesis and secretion by blocking activator protein 1 regulatory enzymes such as p38, extracellular signal-regulated kinases (ERKs), and cyclic adenosine mono-phosphate response element-binding protein. Pg-C-EE also suppressed ROS generation induced by $H_2O_2$ and UVB. Treatment with Pg-C-EE decreased the expression of matrix metalloproteinases, mitogen-activated protein kinases, and hyaluronidases and increased the cell survival rate. Conclusion: These results suggest that Pg-C-EE may have antimelanogenesis properties and skin-protective properties through regulation of activator protein 1 and cyclic adenosine monophosphate response element-binding protein signaling. Pg-C-EE may be used as a skin-improving agent, with moisture retention and whitening effects.

Frequency Synchronization Algorithm for Improving Performance of OFDMA System in 3GPP LTE Downlink (3GPP LTE 하향링크 OFDMA 시스템의 수신 성능 향상을 위한 주파수 동기 알고리즘)

  • Lee, Dae-Hong;Im, Se-Bin;Roh, Hee-Jin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.120-130
    • /
    • 2009
  • In this paper, we propose a receiver structure for frequency synchronization in OFDMA (Orthogonal Frequency Division Multiple Access) system which is considered as 3GPP LTE(Long Term Evolution) downlink. In general, OFDMA frequency synchronization consists of two parts: coarse synchronization and fine synchronization. We consider P-SCH (Primary-Synchronization Channel) and CP (Cyclic Prefix) of OFDMA symbol for coarse synchronization and fine synchronization, respectively. The P-SCH signal has two remarkable disadvantages that it does not have sufficiently many sub-carriers and its differential correlation characteristic is not good due to ZC (Zadoff Chu) sequence-specific property. Hence, conventional frequency synchronization algorithms cannot obtain satisfactory performance gain. In this paper, we propose a modified differential correlation algorithm to improve performance of the coarse frequency synchronization. Also, we introduce an effective PLL (Phase Locked Loop) structure to guarantee stable performance of the fine frequency synchronization. Simulation results verify that the proposed algorithm has superior performance to the conventional algorithms and the 2nd-order PLL is effective to track the fine frequency offset even in high mobility.

Synthesis of Several Osmium Redox Complexes and Their Electrochemical Characteristics in Biosensor (오스뮴 착물들의 합성 및 전기화학적인 특성에 관한 연구)

  • Kim, Hyug-Han;Choi, Young-Bong;Tae, Gun-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2008
  • Redox complexes to transport electrodes from bioreactors to electrodes are very important part in electrochemical biosensor industry. A novel osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium metal. Newly synthesized osmium complexes are described as ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dme-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dmo-bpy)}_2{(ap-im)Cl]}^{+/2+}$, ${[Os(dcl-bpy)}_2{(ap-im)Cl]}^{+/2+}$. We have been studied the electrochemical characteristics of these osmium complex with electrochemical techniques such as cyclic voltammetry and chronoamperommetry. Osmium redox complexes were immobilized on the screen printed carbon electrode(SPE) with deposited gold nanoparticles. The electrical signal converts the osmium redox films into an electrocatalyst for glucose oxidation. Each catalytic currents were related with the potentials of osmium complexes.

Low-cycle Fatigue Behaviors of the Steel Pipe Tee of a Nuclear Power Plant Using Image Signals (이미지 신호를 이용한 원자력발전소 강재배관 Tee의 저주기 피로 거동)

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Cheung, Jin-Hwan;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.77-83
    • /
    • 2019
  • Upon installing a seismic isolation device on a nuclear power plant, the device takes on the suppression of seismic loads. This is expected to bring about a larger displacement than what is seen prior to the installation of the seismic isolation device. Depending on the displacement change, the seismic risk for some equipment can increase. Particularly in case of the piping system, which is used for connecting the structure isolated from seismic events with common structures, the seismic risk is expected to rise significantly. In this study, the limit state of the steel pipe tee, which is a vulnerability part of the nuclear power plant piping system, was defined as leakage, and an in-plane cyclic loading test was conducted. As it is difficult to measure the moment and rotation of the steel pipe tee using the conventional sensors, an image signal was used. This study proposed a leakage line and low-cycle fatigue curves using the relationship between the moment and the rotation of a 3-inch steel pipe tee.

Development of Flexible Glucose Measurement Sensor Based on Copper Nanocubes Electroplated Laser Induced Graphene Electrode (구리 나노 큐브를 전기 도금한 레이저 유도 그래핀 전극 기반의 글루코스 측정용 유연 센서 개발)

  • Kim, Geon-Jong;Kim, Taeheon;Pak, Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.413-418
    • /
    • 2018
  • In this paper, we describe the development of a non-enzymatic glucose sensor based on copper nanocubes(Cu NCs) electroplated laser induced graphene(LIG) electrodes which can detect a certain range of glucose concentrations. $CO_2$ laser equipment was used to form LIG electrodes on the PI film. This fabrication method allows easy control of the LIG electrode size and shape. The Cu NCs were electrochemically deposited on the LIG electrodes to improve electron transfer rates and thus enhancing electrocatalytic reaction with glucose. The average sheet resistances before and after electroplating were $15.6{\Omega}/{\Box}$ and $19.6{\Omega}/{\Box}$, respectively, which confirmed that copper nanocubes were formed on the laser induced graphene electrodes. The prepared electrode was used to measure the current according to glucose concentration using an electrochemical method. The LIG electrodes with Cu NCs demonstrated a high degree of sensitivity ($1643.31{\mu}A/mM{\cdot}cm^2$), good stability with a linear response to glucose ranging from 0.05 mM to 1 mM concentration, and a limit of detection of 0.05 mM. In order to verify that these electrodes can be used as flexible devices, the electrodes were bent to $30^{\circ}$, $90^{\circ}$, and $180^{\circ}$ and cyclic voltammetry measurements were taken while the electrodes were bent. The measured data showed that the peak voltage was almost constant at 0.42 V and the signal was stable even in the flexed condition. Therefore, it is concluded that these electrodes can be used in flexible sensors for detecting glucose in the physiological sample like saliva, tear or sweat.

An Oxalic Acid Sensor Based on Platinum/Carbon Black-Nickel-Reduced Graphene Oxide Nanocomposites Modified Screen-Printed Carbon Electrode

  • Income, Kamolwich;Ratnarathorn, Nalin;Themsirimongkon, Suwaphid;Dungchai, Wijitar
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.416-423
    • /
    • 2019
  • A novel non-enzymatic oxalic acid (OA) sensor based on the platinum/carbon black-nickel-reduced graphene oxide (Pt/CBNi-rGO) nanocomposite is reported. The nanocomposites were prepared by the ethylene glycol reduction method. Their morphology and chemical composition were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results clearly demonstrated the formation of the Pt/CB-Ni-rGO nanocomposite. The electrocatalytic activity of the Pt/CB-Ni-rGO electrode was investigated by cyclic voltammetry. It was determined that the appropriate amount of Pt enhanced the catalytic activity of Pt for oxalic acid electro-oxidation. Moreover, the modified electrode was determined to be highly selective for oxalic acid without interference from compounds commonly found in urine including uric acid and ascorbic acid. The chronoamperometric signal gave a wide linearity range of 20 μM-60 mM and the detection limit (3σ) was found to be 2.35 μM. The proposed method showed high selectivity, stability, and good reproducibility and could be used with micro-volumes of sample for the detection of oxalic acid. Finally, the oxalic acid content in artificial and control urine samples were successfully determined by our proposed electrode.

Endophytic Bacillus sp. CY22 from a Balloon Flower (Platycodon grandiflorum) Produces Surfactin Isoforms

  • Cho, Soo-Jeong;Hong, Su-Young;Kim, Jin-Young;Park, Sang-Ryeol;Kim, Min-Keun;Lim, Woo-Jin;Shin, Eun-Chule;Kim, Eun-Ju;Cho, Yong-Un;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.859-865
    • /
    • 2003
  • Surfactin is a mixture of cyclic lipopeptides built from variants of a heptapeptide and a ${\beta}-hydroxy$ fatty acid produced by several strains of Bacillus sp. Surfactin isoforms produced by endophytic Bacillus sp. CY22 from a balloon flower were isolated and characterized. It was found that the purified surfactin had three isoforms with protonated masses of m/z 1,008, 1,022, and 1,036, and different structures in combination with Na, K, Ca ions using MALDI-TOF MS, ESI-MS/MS, and ICP MS, respectively. In the MS/MS analysis, the isolated surfactin had the identical amino acid sequence (LLVDLL) and hydroxy fatty acids (with 13 to 15 carbons in length), even though isolated from different Bacillus strains. The sfp22 gene, required for producing the surfactin, consisted of an open reading frame (ORF) of 675 bp encoding 224 amino acid residues with a signal peptide of 20 amino acids. The predicted amino acid sequence of sfp22 was very similar to that of Ipa-8.

Synthesis of Osmium Redox Complex and Its Application for Biosensor Using an Electrochemical Method (오스뮴 착물 합성과 전기화학적인 방법을 이용한 바이오센서에 관한 연구)

  • Choi, Young-Bong;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.150-154
    • /
    • 2007
  • Redox complexes to transport electrodes from biomaterial to electrodes are very important part in commercial biosensor industry. A novel osmium redox complex was synthesized by the coordinating pyridine group with osmium metal. A novel osmium complex is described as $[Os(dme-bpy)_2(ap-im)Cl]^{+/2+}$. We have been studied the electrochemical characteristics of this osmium complex with electrochemical techniques such as cyclic voltammetry and chronoamperommetry. In order to immobilize osmium redox complexes on the electrode, we deposited gold nano-particles on screen printed carbon electrode(SPE). The electrical signal converts the osmium redox films into an electrocatalyst for glucose oxidation. The catalytic currents were monitored that the catalytic currents were linearly increased from 1 mM to 5 mM concentrations of glucose.

Study on Electrochemical Detection of Cyclodextrin-molecule Interactions for Sensor Applications (센서 응용을 위한 사이클로덱스트린-분자 상호작용의 전기화학적 검출)

  • Park, Minji;Kim, Sooyeoun;Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.519-523
    • /
    • 2018
  • Cyclodextrins are a class of oligosaccharides having an extremely low toxicity, so that they have been used for the formation of host-guest complexes and removal of toxic gases or molecules. In this study, the subtle phenomenon associated with the formation of host-guest complexes between cyclodextrin and toxic molecules (methyl paraben) was experimentally investigated. First, the formation of cyclodextrin-methyl paraben complexes was monitored by UV/Vis spectroscopy as a function of the cyclodextrin concentration. Secondly, the electrochemical measurement was performed with the surface engineered Au electrode having cyclodextrin molecules on the Au substrate. The sensing signal derived from the addition of methyl paraben solution into the Au surface was measured delicately. This study can be informative for future applications such as sensors.

Electrical Conductance and Electrode Reaction of $RbAg_4I_5$ Single Crystals (고체전해질 $RbAg_4I_5$ 단결정의 전기전도성과 전극반응)

  • Jong Hee Park;Woon-Kie Paik
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.295-301
    • /
    • 1980
  • The electrical conductivity of solid electrolyte $RbAg_4I_5$ single crystal was studied at various temperatures. The four-probe method was used in measuring the conductance with an ac signal imposed on the specimen. The ionic conductivity was $0.284 ohm^{-1} cm^{-1}\;at\;25^{\circ}C$, and the activation energy for $Ag^+$ ion migration was calulated to be 1.70 kcal/mole. These values agree well with those reported for polycrystalline samples. Reactions at $Ag/RbAg_4I_5$ interface were studied by cyclic voltammetry with a silver reference electrode. It was found that silver ion is reversibly reduced at silver surfaces below zero volt, and iodide was oxidized above +0.67 volt.The anodic current arising from the oxidation of the electrode was small in magnitude initially over a wide range of potential, but, after silver was cathodically deposited on the electrode, reversing the potential sweep to the anodic direction resulted in a sharp peak of anodic current.

  • PDF