• Title/Summary/Keyword: Cyclic C(T) test

Search Result 39, Processing Time 0.024 seconds

Determination of Chaboche Cyclic Combined Hardening Model for Cracked Component Analysis Using Tensile and Cyclic C(T) Test Data (표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법)

  • Hwang, Jin Ha;Kim, Hune Tae;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • Cracked component analysis is needed for structural integrity analysis under seismic loading. Under large amplitude cyclic loading conditions, the change in material properties can be complex, depending on the magnitude of plastic strain. Therefore the cracked component analysis under cyclic loading should consider appropriate cyclic hardening model. This study introduces a procedure for determining an appropriate cyclic hardening model for cracked component analysis. The test material was nuclear-grade TP316 stainless steel. The material cyclic hardening was simulated using the Chaboche combined hardening model. The kinematic hardening model was determined from standard tensile test to cover the high and wide strain range. The isotropic hardening model was determined by simulating C(T) test under cyclic loading using ABAQUS debonding analysis. The suitability of the material hardening model was verified by comparing load-displacement curves of cyclic C(T) tests under different load ratios.

Cyclic Deformation Behaviors under Isothermal and Thermomechanical Fatigue Conditions in Nb and Mo Added 15Cr Ferritic Stainless Steel (Nb 및 Mo 첨가 페라이트계 스테인리스강의 등온 저주기 및 열기계적 피로에 따른 변형거동)

  • Jung, Jae Gyu;Oh, Seung Taik;Choi, Won Doo;Lee, Doo Hwan;Lim, Jong Dae;Oh, Yong Jun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.707-715
    • /
    • 2009
  • This paper deals with cyclic stress and strain responses during isothermal low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) loadings on Nb and Mo containing 15Cr stainless steel, which is used for exhaust manifolds in automobiles. The test temperatures ($T_{i}$) of the isothermal LCF were 600 and $800^{\circ}C$. The minimum temperature of the TMF test was $100^{\circ}C$ and the maximum temperaures ($T_{p}$) were varied between 500 and $800^{\circ}C$. In both loading conditions, weak cyclic softening is observed at $T_{i}=T_{p}=800^{\circ}C$, but the transition to strong cyclic hardening is completed with the temperature decrease below $T_i=600{\sim}700^{\circ}C$ for LCF and $T_{p}=500{\sim}600^{\circ}C$ for TMF. The stress-strain hysteresis loops in the TMF loading show a significant stress relaxation during compressive (heating) half cycle at $T_{p}>500^{\circ}C$, which develops tensile mean stress during cycling. Due to the stress relaxation, the TMF test sample reveals much lower dislocation density than the isothermally fatigued sample at the same temperature with $T_{p}$. A detailed correlation between fatigue microstructure and cycling deformation behavior is discussed.

Cyclic Stress-strain Hardening Model of AC4C-T6 Alloy at Cryogenic Temperature (극저온 상태에서 AC4C-T6 의 가공 경화 모델 결정에 관한 연구)

  • Lee, Jae-Beom;Kim, Kyung-Su;Lee, Jang-Hyun;Yoo, Mi-Ji;Choung, Joon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.498-509
    • /
    • 2009
  • Present study is concerned with the simulation of plasticity models for the cyclic stressstrain behavior of aluminum alloy AC4C-T6 that can be used for primary materials of LNG cargo pump. Material model of cyclic hardening and plasticity for aluminum alloy AC4C-T6 was investigated through experiments and numerical simulations. Monotonic tensile and cyclic tension-compression test under symmetric load cycles was performed at both room temperature and cryogenic temperature of $-165^{\circ}C$. Based on the experimental data plastic hardening models were evaluated for isotropic/kinematic/combined hardening. FEA (Finite Element Analysis) models which describe the cyclic stress-strain relationship were evaluated for the simulation of plasticity. An appropriate hardening model is proposed comparing the results of FEA with those of experiments.

A Study on the Mathematical Modeling of Human Pharyngeal Tissue Viscoelasticity (인두조직의 점 탄성특성의 수학적모델링에 관한 연구)

  • 김성민;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.495-502
    • /
    • 1998
  • A mathematical model of viscoelasticity on the material property of human pharyngeal tissue utilizing Y.C. Fung's Quasi-linear viscoelastic theory is proposed based on cyclic load, stress relaxation, incremental load, and uniaxial tensile load tests. The material properties are characterized and compared with other biological materials' results. The mathematical model is proposed by combining two characteristic functions determined from the stress relaxation and uniaxial tensile load tests. The reduced stress relaxation function G(t) and elastic response function S(t) are obtained from stress relaxation test and uniaxial tensile load test results respectively. Then the model describing stress-time history of the tissue is implemented utilizing two functions. The proposed model is evaluated and validated by comparing the model's cyclic behaviour with experimental results. The model data could be utilized as an important information for constructing 3-dimensional biomechanical model of human pharynx using FEM(Finite Element Method).

  • PDF

Cyclic Creep Properties of Nicoseal(Fe-29Ni-17Co) Alloy (Nicoseal(Fe-29Ni-17Co) 합금의 Cyclic 크리프 특성)

  • Park, Yong-Gwon;Choi, Jae-Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.177-182
    • /
    • 2005
  • The steady state cyclic mechanism, and the behaviour of Nicoseal(Fe-29Ni-17Co) have been examined under the condition of square wave stress cyclic tension creep test at the temperature, stress and frequency range of $430{\sim}470^{\circ}C$($0.41{\sim}0.43T_m$), 353~383 MPa, and 3 cpm, respectively. Also, the relationship between cyclic creep and static creep have been examined. The stress exponents(n) for the static creep deformation of this alloy were 11.6, 10.0, 8.4 and 7.9 at the temperature of 430, 445, 460 and $470^{\circ}C$, respectively. The apparent activation energies (Q) for the static creep deformation were 54.2, 51.8, 49.7 and 46.8 kcal/mole for the stress of 353, 363, 373 and 383 MPa, From the above results, it could be considered that the cyclic creep accelaration phenomena was obtained and that the cyclic deformation for Nicoseal seemed to be controlled by dislocation climb over the range of experimental conditions. Nicoseal alloy under the cyclic creep conditions was obtained as P=(T+460)(logt+17). The failure plane observed by SEM showed up transgranular fracture at all range.

Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading

  • Hegde, A.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.405-422
    • /
    • 2016
  • The paper deals with the results of the laboratory cyclic plate load tests performed on the reinforced soft clay beds. The performances of the clay bed reinforced with geocells and geocells with additional basal geogrid cases are compared with the performance of the unreinforced clay beds. From the cyclic plate load test results, the coefficient of elastic uniform compression ($C_u$) was calculated for the different cases. The $C_u$ value was found to increase in the presence of geocell reinforcement. The maximum increase in the $C_u$ value was observed in the case of the clay bed reinforced with the combination of geocell and geogrid. In addition, 3 times increase in the strain modulus, 10 times increase in the bearing capacity, 8 times increase in the stiffness and 90% reduction in the settlement was observed in the presence of the geocell and geogrid. Based on the laboratory test results, a hypothetical case of a prototype foundation subjected to cyclic load was analyzed. The results revealed that the natural frequency of the foundation-soil system increases by 4 times and the amplitude of the vibration reduces by 92% in the presence of the geocells and the geogrids.

Behavior of Fatigue Crack Initition and Growth in S45C Steel Under Biaxial Loading (이축하중을 받는 S45C강의 피로균열의 발생과 성장거동)

  • Park, S.H.;Lee, S.H.;Kim, S.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.206-211
    • /
    • 2000
  • Fatigue test was conducted on a S45C steel using hour-glass shaped smooth tubular specimen under biaxial loading in order to investigate the crack formation and growth at room temperature. Three types of loading system, i.e fully reserved cyclic torsion without a superimposed static tension or compression, fully reserved cyclic torsion with a superimposed static tension and fully reserved cyclic torsion with a superimposed static compression were employed. The test results show that a superimposed static tensile mean stress reduced fatigue lifetime. however a superimposed static compressive mean stress increased fatigue lifetime. Experimental results indicated that cracks were initiated on planes of maximum shear strain with either a superimposed mean stresses or not. A biaxial mean stress had an effect on the direction which cracks nucleated and propagated at stage I (mode II).

  • PDF

Experimental Evaluation for Structural Performance of Hybrid Damper Combining Steel Slit and Rotational Friction Damper (강재 슬릿과 회전 마찰형 감쇠 장치를 결합한 복합 감쇠 장치의 실험적 구조 성능 평가)

  • Kim, Yu-Seong;Kang, Joo-Won;Park, Byung-Tae;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.101-109
    • /
    • 2019
  • In order to develop the compatible damping device in various vibration source, a hybrid wall-type damper combining slit and friction damper in parallel was developed. Cyclic loading tests and two-story RC reinforced frame tests were performed for structural performance verification. As a result of the 5-cyclic loading test according to KBC-2016 and low displacement cyclic fatigue test, The hybrid wall type damper increased its strength and the ductility was the same as that of the slit damper. In addition, As a result of the two-layer frame test, the reinforced frame had about twice the strength of the unreinforced frame, and the story drift ratio was satisfied to Life Safety Level.

Themal Fatigue Behavior of Alumina Ceramics (알루미나 세라믹스의 열피로 거동)

  • 정우찬;한봉석;이홍림;이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1094-1100
    • /
    • 1998
  • The thermal fatigue behavior of alumina ceramics was investigated by water quenching method. Single-quench thermal shock tests were performed to decide the critical thermal shock temperature difference ($\Delta$Tc) which was found to be 225$^{\circ}C$ Cyclic thermal shock fatigue tests were performed at temperature diff-erences of 175$^{\circ}C$, 187$^{\circ}C$ and 200$^{\circ}C$ respectively. After cyclic thermal shock fatigue test the distributions of retained strength and crack were observed. Retained strength was measured by four point bending method and crack observation method bydye penetration. In terms of the retained strength distribution the critical number of thermal shock cycles(Nc) were 7 for $\Delta$T=200$^{\circ}C$, 35 for $\Delta$T=187$^{\circ}C$ and 180for $\Delta$T=175$^{\circ}C$ respec-tively. In terms of the crack observation the critical number of thermal shock cycles were 5 for $\Delta$T==200$^{\circ}C$ 20 for $\Delta$T==187$^{\circ}C$ and 150 for $\Delta$T=175$^{\circ}C$ respectively. The difference of Nc investigated by two different methods is due to the formation of the longitudinal cracks which had no effect on the four point bending strength. Therefore the thermal fatigue behavior of alumina ceramics could be more accurately described by the crack observation method than the retained strength measurement method.

  • PDF

Effects of loading history on seismic performance of SRC T-shaped column, Part I: Loading along web

  • Wang, J.;Liu, Z.Q.;Xue, J.Y.;Hu, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.193-201
    • /
    • 2018
  • This paper describes an experimental study on the seismic performance of steel reinforced concrete (SRC) T-shaped columns. The lateral loads were applied along the web of the column with different loading histories, such as monotonic loading, mixed loading of variable amplitude cyclic loading and monotonic loading, constant amplitude cyclic loading and variable amplitude cyclic loading. The failure modes, load-displacement curves, characteristic loads and displacements, ductility, strength and stiffness degradations and energy dissipation capacity of the column were analyzed. The effects of loading history on the seismic performance were focused on. The test results show that the specimens behaved differently in the aspects of the failure mode subject to different loading history, although all the failure modes can be summarized as flexural failure. The hysteretic loops of specimens are plump, and minimum values of the failure drift angles and ductility coefficients are 1/24 and 4.64, respectively, which reflect good seismic performance of SRC T-shaped column. With the increasing numbers of loading cycles, the column reveals lower bearing capacity and ductility. The strength and stiffness of the column with variable amplitude cyclic loading degrades more rapidly than that with constant amplitude cyclic loading, and the total cumulative dissipated energy of the former is less.