Browse > Article

Cyclic Creep Properties of Nicoseal(Fe-29Ni-17Co) Alloy  

Park, Yong-Gwon (Department of Materials Engineering, Chungbuk National University)
Choi, Jae-Ha (Department of Materials Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.18, no.3, 2005 , pp. 177-182 More about this Journal
Abstract
The steady state cyclic mechanism, and the behaviour of Nicoseal(Fe-29Ni-17Co) have been examined under the condition of square wave stress cyclic tension creep test at the temperature, stress and frequency range of $430{\sim}470^{\circ}C$($0.41{\sim}0.43T_m$), 353~383 MPa, and 3 cpm, respectively. Also, the relationship between cyclic creep and static creep have been examined. The stress exponents(n) for the static creep deformation of this alloy were 11.6, 10.0, 8.4 and 7.9 at the temperature of 430, 445, 460 and $470^{\circ}C$, respectively. The apparent activation energies (Q) for the static creep deformation were 54.2, 51.8, 49.7 and 46.8 kcal/mole for the stress of 353, 363, 373 and 383 MPa, From the above results, it could be considered that the cyclic creep accelaration phenomena was obtained and that the cyclic deformation for Nicoseal seemed to be controlled by dislocation climb over the range of experimental conditions. Nicoseal alloy under the cyclic creep conditions was obtained as P=(T+460)(logt+17). The failure plane observed by SEM showed up transgranular fracture at all range.
Keywords
Nicoseal (Fe-29Ni-17Co); Cyclic creep; Activation energies; Stress exponents;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. H. Dalton, How to Design Glass to Metal Joints., (Mc Graw Hill Book co, New York, 1965)
2 E. N. da C. Andrade and B. Chalmers: Proc. Roy. Soc., 138A (1932) 348-374
3 D. K. Shetty, M. Meshii: Met Trans., 6A (1975) 349-358
4 S. W. Nam: Phenomenlogical Theory of Fatigue-Perturbed and Normal Creep of an Aluminum +4.6wt % Magnesium Alloy at High Temperature, Golden Co lorado, Colorado School of Mines, ph. D. Thesis (1974)
5 W. L. Bradley, S. W. Nam, D. K. Matlock: Met. Trans., 7A (1976) 425-430
6 J. T. Evans, R. N. Parkins: Acta Met, 24 (1976) 511-515   DOI   ScienceOn
7 A. J. Kennedy: Proc. R. Soc. London, Ser. A. 213 (1952) 492
8 A. Seeger: Phil. Mag., 46 (1955) 1194-1217   DOI
9 F. Garofalo: Trans AlME, 277 (1963) 351-355
10 J. Weertman, J. appl. phys., 28 (1957) 1185   DOI
11 J. Friedel, Dislocations, (Pergamon Press. 1964) 410
12 S. L. Manner, P. Rodriguez: Metal Science, 17(2) (1983) 63   DOI   ScienceOn
13 W. R. Canon, O. D. Sherby: Met Trans., 1 (1970) 1030
14 K. Hirano, M. Cohen, B. L. Averbach: Acta Met., 9 (5) (1961) 440   DOI   ScienceOn
15 J. J. Hefer, G. V. Smith: Elevated Temperature Properties As Influenced By Nitrogen Additions to types 304 and 316 Austenitic Stainless Steels, (ASTM special Technical Publication 522 (1969) 60-78
16 J. D. Lubahn, R. P. Felgar: Plasticity and Creep of Metals, (1961) pp. 210 29. Robert E. Read-Hill, Physical Metalurgy Principles, 2nd ed.(D.Von Nonstrnad co, New York, 1973) 867
17 A. T. Price: J. Inst. Metals., 95 (1967) 87-89
18 A. H. Melreka, A.V. Evershed: J. of Inst. of Metals, 88 (1959) 411-414
19 A. J. Kennedy: Proc. int. Conf. on Fatigue of Metals, (1956) 401-407