• Title/Summary/Keyword: Cycle Simulation

Search Result 1,634, Processing Time 0.029 seconds

Stochastic analysis for Real Rate Interest of Building Life Cycle Cost(LCC) with Monte-Carlo Simulation (몬테카를로 시뮬레이션을 이용한 건축물 생애주기비용(LCC)의 실질할인율에 대한 확률론적 분석)

  • Kim, Bum-Sic;Jung, Young-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.161-163
    • /
    • 2012
  • Recently on Value Engineering(VE) and Life Cycle Cost(LCC) social interests is increasing. The government Turn Key, BTL projects and public works projects, such as VE and LCC Analysis on the value and economic analysis is mandatory. And accordingly the VE and LCC analysis is underway for the various studies. However, there is a problem existing in the LCC analysis. Worth the cost varies according to the flow of time. However, the real interest rate during the LCC analysis of buildings in calculation time for interest rates and inflation are not considering the value of the flow. In other words, a few years using the average value of the deterministic analysis method has been adopted. These costs for the definitive analysis of the cost of an uncertain future, unforeseen changes resulting hazardous value. In this study of the last 15 years interest rates and inflation targeting by using Monte-Carlo Simulation is to perform probabilistic analysis. This potential to overcome uncertainties of the cost of building a more scientific and LCC Estimation of the probability value of the real interest rate is presented.

  • PDF

Effectiveness Analysis of Alternatives to Rehabilitate the Distorted hydrologic Cycle in the Anyangcheon Watershed using HSPF (HSPF 모형을 이용한 안양천 유역의 물순환 건전화 대안기술 효과분석)

  • Chung, Eun-Sung;Lee, Joon-Seok;Lee, Kil Seong;Kim, Sang-Ug;Kim, Kyung-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.973-984
    • /
    • 2007
  • This study developed and calculated alternative evaluation index (AEI) from the effectiveness analyses of alternatives for rehabilitation of distorted hydrologic cycle. The feasible alternatives for the poor-conditioned region in the Anyangcheon watershed were proposed and quantitatively analyzed using continuous water quantity/quality simulation model, Hydrological Simulation Program-Fortran (HSPF). The effectiveness analyses include 355th flow and 275th flow of flow duration curve and number of increased days to satisfy the target monthly flow for water quantity and BOD average concentration, total daily loads and number of increased days to satisfy the target concentration and total daily loads. The feasible alternatives are restoration of covered stream, prevention of streamflow loss through sewers, redevelopment of existing reservoir, reuse of treated wastewater, use of groundwater collected by subway stations and construction of small wastewater treatment plant. Therefore, alternative priority ranking was derived from AEIs. It will be effective to make an integrated watershed management for sustainable development.

Numerical Analysis of Turbulent Combustion and Emissions in an HRSG System (가스터빈 열 회수 증기 발생기의 난류연소 해석과 배기가스 예측 및 검증)

  • Jang, Jihoon;Han, Karam;Park, Hoyoung;Lee, Wook-Ryun;Huh, Kangyul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The combined cycle plant is an integration of gas turbine and steam turbine, combining the advantages of both cycles. It recovers the heat energy from gas turbine exhaust to use it to generate steam. The heat recovery steam generator plays a crucial role in combined cycle plants, providing the link between the gas turbine and the steam turbine. Simulation of the performance of the HRSG is required to study its effect on the entire cycle and system. Computational fluid dynamics has potential to become a useful to validate the performance of the HRSG. In this study a solver has been implemented in the open source code, OpenFOAM, for combustion simulation in the heat recovery steam generator. The solver is based on the steady laminar flamelet model to simulate detailed chemical reaction mechanism. Thereafter, the solver is used for simulation of HRSG system. Three cases with varying fuel injections and gas turbine exhaust gas flow rates were simulated and the results were compared with measurements at the system outlet. Predicted temperature and emissions and those from measurements showed the same trend and in quantitative agreement.

Integration of BIM and Simulation for optimizing productivity and construction Safety

  • Evangelos Palinginis;Ioannis Brilakis
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.21-27
    • /
    • 2013
  • Construction safety is a predominant hindrance in in-situ workflow and considered an unresolved issue. Current methods used for safety optimization and prediction, with limited exceptions, are paper-based, thus error prone, as well as time and cost ineffective. In an attempt to exploit the potential of BIM for safety, the objective of the proposed methodology is to automatically predict hazardous on-site conditions related to the route that the dozers follow during the different phases of the project. For that purpose, safety routes used by construction equipment from an origin to multiple destinations are computed using video cameras and their cycle times are calculated. The cycle times and factors; including weather and light conditions, are considered to be independent and identically distributed random variables (iid); and simulated using the Arena software. The simulation clock is set to 100 to observe the minor changes occurring due to external parameters. The validation of this technology explores the capabilities of BIM combined with simulation for enhancing productivity and improving safety conditions a-priori. Preliminary results of 262 measurements indicate that the proposed methodology has the potential to predict with 87% the location of exclusion zones. Also, the cycle time is estimated with an accuracy of 89%.

  • PDF

Enhancement of Clock Advancement in Parallel Logic Simulation (병렬처리 논리 시뮬레이션에서 클럭 진행의 개선)

  • 정연모
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.2
    • /
    • pp.15-25
    • /
    • 1994
  • Efficient event evaluation and propagation techniques are proposed to enhance the advancement of simulation clocks of conservative and optimistic logic simulation protocols on parallel processing environments. The first idea of the techniques proposed in this paper is to allow more than one event evaluation per simulation cycle and to pack more than one propagation event in a single message. The second idea is to use advancement windows resulted in good performance in parallelism and execution times.

  • PDF

Spectrums of Chua's Oscillator Circuit with a Cubic Nonlinear Resistor (Cubic 비선형 저항에 의한 카오스 발진회로의 스펙트럼)

  • 김남호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.908-919
    • /
    • 1998
  • This paper describes implementation and simulation of Chua's oscillator circuits with a cubic non-linear resistor. The two-terminal nonlinear resistor NR consists of one Op Amp two multipliers and five resistors. The Chua's oscillator circuit is implemented with analog electronic devices. Period-1 limit cycle period-2 limit cycle period-4 limit cycle and spiral attractor double-scroll attractor and 2-2 window are observed experimentally from the laboratory model and simulated by computer for the presented model. Comparing the result of experiments and simulations the spectrums are satisfied.

  • PDF

Cycle simulation of a triple effect LiBr/water absorption chiller (삼중효용 LiBr/물 흡수식 냉방기의 사이클 시뮬레이션)

  • 조광운;정시영;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.79-87
    • /
    • 1998
  • Basic design of a 50USRT(175㎾) triple effect absorption chiller driven by hot gas has been carried out for both parallel and series flow cycles. Parallel flow cycle showed higher COP, however, the temperature in the generator was also higher than that in series flow cycle. Dynamic operation behavior of a parallel flow system at off-design conditions, such as the change in heat transfer medium temperature or the construction change of the system components, has been investigated in detail. It was found that the cooling capacity was seriously decreased by reducing hot gas flow rate and UA-value in the high temperature generator. However, the system COP was improved, because thermal load in the system components was reduced. The COP and the cooling capacity was found to be improved as cooling water temperature decreased or chilled water temperature increased. The optimum ratio of solution distribution could be suggested by considering the COP, the cooling capacity and the highest temperature in the system, which is critical for corrosion.

  • PDF

A Performance Monitoring Method for Combined Cycle Power Plants (복합화력 성능감시 정량화 기법)

  • Joo, Yong-Jin;Kim, Si-Moon;Seo, Seok-Bin;Kim, Mi-Young;Ma, Sam-Sun;Hong, Jin-Pyo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.5
    • /
    • pp.39-46
    • /
    • 2009
  • This paper outlines how the on-line performance monitoring system can be used to improve the efficiency and maintenance of the equipments. And a method of the heat rate allocation to each equipment was suggested to monitor the performance of combined cycle power plants. This calculates the expected heat rate of current conditions and compares it with actual values. Loss allocation in heat rate is reconciled by calculating the magnitude of the deficiency contributed by major components, such as the gas turbine, heat recovery steam generator, steam turbine and condenser. Expected power output is determined by a detailed model and correction curves of the plant. This simulation models are found to reproduce high accuracy in behavior of the cycle for various operating conditions, both in design and in off-design condition. Errors are lower than 2% in most cases.

High Cycle Fatigue Damage under Multiaxial Random Loading through Dynamic Simulation for an Automotive Sub-Frame (동력학 시뮬레이션에 의한 다축 랜덤하중 하에서 자동차 서브프레임의 고 되풀이수 피로손상 평가)

  • Lee, Hak-Joo;Kang, Jae-Youn;Choi, Byung-Ick;Kim, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.946-953
    • /
    • 2003
  • A FEM-based analytical approach was used to evaluate the multiaxial high cycle fatigue damage of an automotive sub-frame. Elastic Multi Body Simulation (MBS) has been applied in order to determine the multiaxial load histories. The stresses due to these loads have been given by FE computation. These results have been used as the input for the multiaxial fatigue analysis. For the assessment of multiaxial high cycle fatigue damage, the signed von Mises, the signed Tresca, the absolute maximum principal stress and critical plane methods have been employed. In addition, the biaxiality ratio, a$\sub$e/, the absolute maximum principal stress, $\sigma$$\sub$p/ and the angle, $\phi$$\sub$P/, between $\sigma$$\sub$1/ and the local x-axis, have been calculated to evaluate the stress state at each node.

A Study on the Engineering Design for 20kW-Grade Waste Gas Heat Recovery (20kW급 폐열회수 시스템 공정 설계에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Jeong, Eun Ik;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.91-96
    • /
    • 2018
  • This study is collects design data through the process design of the organic Rankine cycle, which can produce 20kW of electric power through the recovery of waste heat. In this study, the simulation was conducted by using APSEN HYSYS in order to make the model for the process design of the 20kW class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, with the water steam used as the cooling water for the cooler and the refrigerant R245fa in the cycle. In Case 1 and Case 2, it was expected and found that the cycle efficiency was 10.6% and that 36.86kw was produced, considering the margin of 84% of 20kW. In Case 3 and Case 4, it was expected and found from the simulation that the cycle efficiency was 12% and that 30.0kw was produced, considering the margin of 84% of 20kW.