• Title/Summary/Keyword: Cyanide degradation

Search Result 19, Processing Time 0.029 seconds

Growth and Cyanide Degradation of Azotobacter vinelandii in Cyanide-Containing Wastewater System

  • Koksunan, Sarawut;Vichitphan, Sukanda;Laopaiboon, Lakkana;Vichitphan, Kanit;Han, Jaehong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.572-578
    • /
    • 2013
  • Azotobacter vinelandii, a strict aerobic nitrogen-fixing bacterium, has been extensively studied with regard to the ability of $N_2$-fixation due to its high expression of nitrogenase and fast growth. Because nitrogenase can also reduce cyanide to ammonia and methane, cyanide degradation by A. vinelandii has been studied for the application in the bioremediation of cyanide-contaminated wastewater. Cyanide degradation by A. vinelandii in NFS (nitrogen-free sucrose) medium was examined in terms of cell growth and cyanide reduction, and the results were applied for cyanide-contaminated cassava mill wastewater. From the NFS medium study in the 300 ml flask, it was found that A. vinelandii in the early stationary growth phase could reduce cyanide more rapidly than the cells in the exponential growth phase, and 84.4% of cyanide was degraded in 66 h incubation upon addition of 3.0 mM of NaCN. The resting cells of A. vinelandii could also reduce cyanide concentration by 90.4% with 3.0 mM of NaCN in the large-scale (3 L) fermentation with the same incubation time. Finally, the optimized conditions were applied to the cassava mill wastewater bioremediation, and A. vinelandii was able to reduce the cyanide concentration by 69.7% after 66 h in the cassava mill wastewater containing 4.0 mM of NaCN in the 3 L fermenter. Related to cyanide degradation in the cassava mill wastewater, nitrogenase was the responsible enzyme, which was confirmed by methane production. These findings would be helpful to design a practical bioremediation system for the treatment of cyanide-contaminated wastewater.

Plasmid- and Chromosome-Mediated Assimilation of Phenol and Cyanide in Pseudomonas sp. Strain PhCN

  • El-Deeb Bahig A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1068-1077
    • /
    • 2006
  • Pseudomonas sp. PhCN strain, which has the potential to utilize phenol and cyanide as a sole carbon and nitrogen source, was isolated. A comparison of the effect of cyanide on phenol degradation and vice versa by strain PhCN showed that the degradation time was significantly delayed by an increase in either phenol or cyanide concentration, and the greatest activities were obtained in basal medium containing a low concentration of cyanide and phenol. This strain contained two plasmids of approximately 120 kb (pPhCN-1) and 110 kb (pPhCN-2). Plasmid curing experiments produced a plasmid-free strain as well as strains containing either the 120- or the 110 kb plasmid. The strains were tested for their ability to utilize phenol and KCN. The results demonstrated that the ability to utilize phenol was encoded by the 120 kb plasmid, whereas the ability to utilize cyanide appeared to be encoded by the chromosome.

Degradation of Cyanide by Activated Sludge Immobilized with Polyethylene Glycol (고정화 활성슬러지를 이용한 시안 분해)

  • Cheong, Kyung-Hoon;Choi, Hyung-Il;Kim, Jung-Ae;Moon, Ok-Ran;Kim, Myung-Hee
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1343-1351
    • /
    • 2008
  • The activated sludge obtained from wastewater coke oven plant was immobilized by entrapment with polyethylene glycol (PEG). The effects of several factors on the biodegradation of $CN^-$ from. synthetic wastewater were investigated using batch and continuous reactors. The degradation rate of $CN^-$ increased with increasing of the immobilized bead volume in the reactor. Approximately 7.65mg/L of $NH_4-N$ was produced upon the degradation of 35mg/L of $CN^-$. When high concentrations of the toxic cyanide complex were used in the testing of cyanide degradation, the free activated sludge could be inhibited more than that of the immobilized activated sludge. When the phenol concentration was higher than 400mg/L in the synthetic wastewater, approximately 98.4% of $CN^-$ was removed within 42 hours by the immobilized activated sludge. However, the cyanide was not completely degraded by the tree activated sludge. This indicates that high phenol concentrations can act as a toxic factor for the free activated sludge. A $CN^-$ concentration of less than 1mg/L was achieved by the immobilized sludge at the loading rate of 0.025kg $CN^-/m^3-d$. Moreover, it was found that the HRT should be kept for 48 hours in order to obtain stable treatment conditions.

Bacterial Community Structure in Activated Sludge Reactors Treating Free or Metal-Complexed Cyanides

  • Quan Zhe-Xue;Rhee Sung-Keun;Bae Jin-Woo;Baek Jong-Hwan;Park Yong-Ha;Lee Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.232-239
    • /
    • 2006
  • The microbial activity and bacterial community structure of activated sludge reactors, which treated free cyanide (FC), zinc-complexed cyanide (ZC), or nickel-complexed cyanide (NC), were studied. The three reactors (designated as re-FC, re-ZC, and re-NC) were operated for 50 days with a stepwise decrease of hydraulic retention time. In the re-FC and re-ZC reactors, FC or ZC was almost completely removed, whereas approximately 80-87% of NC was removed in re-NC. This result might be attributed to the high toxicity of nickel released after degradation of NC. In the batch test, the sludges taken from re-FC and re-ZC completely degraded FC, ZC, and NC, whereas the sludge from re-NC degraded only NC. Although re-FC and re-ZC showed similar properties in regard to cyanide degradation, denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene of the bacterial communities in the three reactors showed that bacterial community was specifically acclimated to each reactor. We found several bacterial sequences in DGGE bands that showed high similarity to known cyanide-degrading bacteria such as Klebsiella spp., Acidovorax spp., and Achromobacter xylosoxidans. Flocforming microorganism might also be one of the major microorganisms, since many sequences related to Zoogloea, Microbacterium, and phylum TM7 were detected in all the reactors.

Cyanide Degradation by Two Recombinant Cyanide Hydratases (Recombinant Cyanide Hydratases에 의한 시안화물 분해)

  • Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1287-1291
    • /
    • 2009
  • The genes of cyanide hydratase(CHT), a kind of nitrilases whichhydrolyze cyanide to formamide were extracted from N. crassa and A. nidulans, the two fungal strains. The recombinant forms of the CHT originated from N. crassa and A. nidulans were prepared with N-terminal hexahistidine purificationtags or no tags, and expressed in E. coli. The enzymes were purified using immobilized metal affinity chromatography. They were compared according to their pH activity profiles, and kinetic parameters. The N. crassa CHT has the wider pH range of activity above 50% and three-fold higher turnover rate (6.6 ${\times}$ $10^8$ $min^{-1}$) than the A. nidulans, meanwhile the CHT of A. nidulans has the higher $K_m$ value. Expression of CHT in both N. crassa and A. nidulans were induced by the presence of KCN, regardless of any presence of nitrogen sources. Max. 82% of KCN was degraded in 60 min for biological degradation tests.

Performance of Fusarium oxysporum EKT01/02 isolate in cyanide biodegradation system

  • Akinpelu, Enoch Akinbiyi;Adetunji, Adewole Tomiwa;Ntwampe, Seteno Karabo Obed;Nchu, Felix;Mekuto, Lukhanyo
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.223-227
    • /
    • 2018
  • This study reports a cyanide resistant and/or tolerant fungus, isolated from the rhizosphere of Zea mays contaminated with cyanide-based pesticides. The isolate was characterised using molecular biology. The effect of free cyanide and heavy metals on the growth of isolate in a synthetic gold mine wastewater was examined. The molecular analyses identified the isolate as Fusarium oxysporum EKT01/02 (KU985430/KU985431). The isolate had a free cyanide degradation efficiency of 77.6%. The results indicated greater growth impairment in culture containing Arsenic (optical density 1.28 and 1.458) and cyanide (optical density 1.315 and 1.385). Higher growth was observed in all cultures supplemented with extracellular polymeric substance. This study showed that the isolate possesses wide substrate utilisation mechanism that could be deployed in environmental engineering applications.

A Study on the Decomposition of Amygdalin Using an In Vitro Assay (Amygdalin의 in Vitro 분해에 관한 연구)

  • Kwon, Hoon-Jeong;Jo, Yong-Jin
    • Toxicological Research
    • /
    • v.23 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • Amygdalin is a cyanogenic glycoside which is commonly found in almonds, bamboo shoots, and apri-cot kernels, and peach kernels. Amygdalin was first hydrolysed into prunasin, then degraded into cyanohydrin by sequential two-stage mechanism. The objective of this study was to examine the amygdalin decomposition and cyanide formation at various in vitro conditions, including acid, enzyme and anaerobic microbes (AM) in human feces (HF). In acid hydrolysis mimicking gastric environment, amygdalin was degraded to cyanide up to 0.2% in specific pH. In contrast, enzyme assay showed higher cyanide generation either by ${\beta}$-glucosidase, or by incubation with microbe. In conclusion, we are convinced of cyanide generation are occurred mainly by microbiological activities of the gut flora up to 41.53%. After ingestion with some staff, the degree and site of degradation in an organism is a key parst of regulatory decision making of that staff.

Cyanide Degradation from Plating Wastewater Using Iron Oxide Nanocomposite Layer (산화철 나노구조박막 이용한 도금폐수내의 시안제거)

  • Jang, Jun-Won;Kim, Hye-Ran;Lim, Hyeong-Seok;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.292-297
    • /
    • 2014
  • We synthesized the self-organized nanoporous oxide with potentiostatic anodization of iron foil. The iron oxide nanocomposite (INCs) were fabricated in 1M $Na_2SO_4$ containing 0.5wt% NaF electrolyte holding the potential at 20, 40 and 60 V for 20min, respectively. Field Emmision Scanning Electron Microscopy (FESEM) and X-ray Diffractometer (XRD) were used to evaluate the micromorphology and crystalline structure of INC film. Also, this study was performed to evaluate the fenton reaction using INC film with hydroperoxide for degradation of cyanide dissolved in water. In case of INC-40V in the presence of $H_2O_2$ 3%, the first-order rate constant was found to be $1.7{\times}10^{-2}min^{-1}$, and indicated to be $1.2{\times}10^{-2}min^{-1}$ on commercial hematite powder. This result is shown to be good performance enough to replace the powder type for treatment of wastewater.

Impact of Dissolved Wastewater Constituents on Laccase-Catalyzed Treatment of Bisphenol A

  • Kim, Young-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.161-166
    • /
    • 2004
  • The impact of dissolved wastewater constituents on the treatment of synthetic bisphenol A (BPA) solutions was investigated under a variety of reaction conditions. The laccase enzyme from Trametes vesicolor was used for the BPA treatment. The constituents studied included various inorganic salts, organic compounds and heavy metal ions. BPA degradation was inhibited by sulfate, thiosulfate, sulfide, nitrite, and cyanide ions at 25 mg/$\ell$, 100mg/$\ell$, 25 mg/$\ell$ 150 mg/$\ell$, and 2.5 mg/$\ell$, respectively. However, the inhibitive effects of sulfide and sulfite on BPA degradation were diminished by additional aeration to oxidize them. Formaldehyde significantly reduced the rate of BPA degradation at 1.0% among organic compounds studied. Among heavy metal ions tested, Fe(II) substantially suppressed BPA removal at 1 mM. MgCl$_2$ and CaCl$_2$ exhibited great inhibition of BPA degradation at 25mM.

Reaction Mechanism of $\alpha$-Diethylaminoacetophenone with Potassium Cyanide and Ammonium Cabonate(II) ($\alpha$-Diethylaminoacetophenone의 시안화칼륨과 탄산암모늄과의 반응 메카니즘 연구(II))

  • 권순경;조정혁
    • YAKHAK HOEJI
    • /
    • v.23 no.3_4
    • /
    • pp.167-171
    • /
    • 1979
  • It is knwon that in the reaction of .alpha.-diethylaminoacetophenone with potassium cyanide and ammonium carbonate in dilute alcohol solution, 5-phenylhydantoin is formed. In this study the mechanism of the reaction by which diethylaminomethyl group is eliminated, was investigated with applying GC/MS-system. From the fragmentation pattern of mass spectrum of the unknwon compound, which has mol peak 112, it was identified as diethylaminoacetonitrile. According to our GC/MS study of the reaction mixture, it seems likely that diethylaminomethyl group is eliminated neither through the alkali degradation of .alpha.-diethylaminoacetophenone to aldehyde nor after the anticipated hydantoin formation. But it is believed that in the course of ring formation through an unidentified mechanism diethylaminomethyl group is eliminated.

  • PDF