Impact of Dissolved Wastewater Constituents on Laccase-Catalyzed Treatment of Bisphenol A

  • Kim, Young-Jin (Department of Civil Engineering and Applied Mechanics, McGill University)
  • Published : 2004.06.01

Abstract

The impact of dissolved wastewater constituents on the treatment of synthetic bisphenol A (BPA) solutions was investigated under a variety of reaction conditions. The laccase enzyme from Trametes vesicolor was used for the BPA treatment. The constituents studied included various inorganic salts, organic compounds and heavy metal ions. BPA degradation was inhibited by sulfate, thiosulfate, sulfide, nitrite, and cyanide ions at 25 mg/$\ell$, 100mg/$\ell$, 25 mg/$\ell$ 150 mg/$\ell$, and 2.5 mg/$\ell$, respectively. However, the inhibitive effects of sulfide and sulfite on BPA degradation were diminished by additional aeration to oxidize them. Formaldehyde significantly reduced the rate of BPA degradation at 1.0% among organic compounds studied. Among heavy metal ions tested, Fe(II) substantially suppressed BPA removal at 1 mM. MgCl$_2$ and CaCl$_2$ exhibited great inhibition of BPA degradation at 25mM.

Keywords

References

  1. Ash, M. and Ash, I. : Handbook of plastic and rubber additives. Gower, Hampshire, UK, 1995
  2. Steinmetz, R., Mitchener, N. A., Grant, A., Allen, D. L., Bigsby, R. M. and Ben-Jonathan, N. : The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology 136, 2741-2747, 1998 https://doi.org/10.1210/en.136.6.2741
  3. Olea, N., Pulgar, R., Plerez, R, Olea-Serrano, F, Rivas, A., Novillo-Fertrell, A., Pedraza, V., Soto, A. M. and Sonnenschein, C. : Estrogenicity of resin-based composites and sealants used in dentistry. Environ. Health Perspect., 104, 298-305, 1996 https://doi.org/10.2307/3432888
  4. Levin, L., Viale, A. and Forchiassin, A. : Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. Inter. Biodet. Biodeg., 52, 1-5, 2003 https://doi.org/10.1016/S0964-8305(02)00091-4
  5. Fukuda, T, Uchida, H., Takashima, Y, Uwajima, T, Kawabata, T. and Suzuki, M.: Degradation of bisphenol a by purified laccase from Trametes villosa. Biochem. Biophys. Res. Commun., 284, 704-706, 2001 https://doi.org/10.1006/bbrc.2001.5021
  6. Akatas, N. and Tanyolac, A. : Reaction conditions laccase-catalyzed polymerization of catechol. Bioresource Technology, 87, 209-214, 2003 https://doi.org/10.1016/S0960-8524(02)00254-7
  7. Bumpus, J., Tien, M., Wright, D. and Aust, S. : Oxidation of persistent environmental pollutants by a white rot fungus. Science 228, 1434-1436, 1985 https://doi.org/10.1126/science.3925550
  8. Joshi, D. and Gold, M. : Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol.,59, 1779-1785, 1993
  9. Martins, M. A. M., Lima, N., Silvertre, A. J. D. and Queiroz, M. J. : Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes. Chemosphere, 52, 967-973, 2003 https://doi.org/10.1016/S0045-6535(03)00286-8
  10. Gianfrega, L., Sannino, F, Rao, M. A. and Bollag, J.-M.: Oxidative transformation of phenol in aqueous mixtures. Water Research, 37, 3205-3215, 2003 https://doi.org/10.1016/S0043-1354(03)00154-4
  11. Wolfenden, B. S. and Wilson, R. L. : Radical cations as reference chromogens in kinetic studies of one-electron transfer reacdons: pulse radiolysis of 2,2'-azinobis-(3-ethylbenz-thiazoline-6-sulphonate). J. Chem. Perkin. Trans., 2, 805-812, 1982
  12. Wagner, M. and Nicell, J. A. : Impact of dissolved wastewater constituents on peroxidase-catalyzed treatment of phenol. J. Chem. Technol. Biotechnol, 77, 419-428, 2002 https://doi.org/10.1002/jctb.571
  13. Fresenius, W. and Schneider, W. : Waste water technology origin, collection treatment and analysis of waste water. Springer-Verlag, Berlin, 139-152, 1989
  14. Eggleton, M. K., Pecoraro, C. and McMillin, D. R. : The role of cyanide in the removal of type 2 copper from laccase : Arch. Biochem. Biophys., 320(2), 276-279, 1995 https://doi.org/10.1016/0003-9861(95)90010-1
  15. Ragusa, S., Cambria, M. T, Pierfederici, F, $Scir\'{e}$, A., Bertoli, E., Tanfani, F. and Cambria, A. : Structure-acdvity relationship on fungal laccase from Rigidoporus lignosus: A Fourier-transform infrared spectroscopic study. Biochim. Biophys. Acta, 1601, 155-162, 2002 https://doi.org/10.1016/S1570-9639(02)00469-7
  16. Robles, A., Lucas, R., Martinez-Canamero, M., Omar,N. B., Perez, R. and Galvez, A. : Characterisation of laccase activity produced by the hyphomycete Chalara (syn. Thetaviopsis) Paradoxa CH32. Enzym. Micmbial Technool., 31, 516-522, 2002
  17. Solomon, E. I., Sundaram, U. M. and Machonkin, T. E.: Multicopper oxidases and oxygenases. Chem. Rev., 96, 2563-2605, 1996 https://doi.org/10.1021/cr950046o
  18. Bogdanovskaya, V. A., Tarasevich, M. R., Kuznetsova, L. N., Reznik, M. F. and Kasatkin, E. V. : Peculiarities of direct bioelectrocatalysis by laccase in aqueous-nonaqueous mixtures. Biosen. Bioelec., 17, 945-951, 2002 https://doi.org/10.1016/S0956-5663(02)00086-6
  19. Hatvani, N. and Mecs, I. : Effects of certain heavy metals on the growth, dye decolonzation, and enzyme activity of Lentinuta edodes. Ecotox. Environ. Safety., 55, 199-203, 2003 https://doi.org/10.1016/S0147-6513(02)00133-1
  20. Ruxiu, C., Houping, H., Guangfei, W., Zhixin, L. and Yun'e, Z. : Study and analytical application of rare earth inhibition of LACCASE. Talnta, 41(5), 735-738, 1994 https://doi.org/10.1016/0039-9140(93)E0032-9
  21. Baldrian, P. and Gabriel, J. : Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol. Letters, 206, 69-74, 2002 https://doi.org/10.1111/j.1574-6968.2002.tb10988.x
  22. Stoj, C. and Kosman, D. J. : Cuprous activity of yeast Pet3P and human ceruloplasmin. FEBS Letters, 554, 422-426, 2003 https://doi.org/10.1016/S0014-5793(03)01218-3
  23. Torres, E., Bustos-Jaimes, I. and Borgne, S. L. : Potential use of oxidative enzymes for the detoxification of organic pollutants. App. Catatysis B: Environmental, 46, 1-15, 2003 https://doi.org/10.1016/S0926-3373(03)00228-5
  24. Grass, G. and Rensing, C. : CueO Is a Multiple-copper Oxidase That Confers Copper Tolerance in Escherichia coli. Biochem. Biophys. Res. Commun., 286, 902-908, 2001 https://doi.org/10.1006/bbrc.2001.5474
  25. Ryan, S., Schnitzhofer, W., Tzanov, T., Cavaco-Paulo, A. and Giibitz, G. M. : An add-stable laccase from Sclerotium rolfsii with potential for wool dye decolouh zation. Enzym. Microbial Technol., 33, 766-774, 2003 https://doi.org/10.1016/S0141-0229(03)00162-5
  26. Barton, S. C., Pickard, M., Vazquez-Duhalt, R. and Heller, A. : Electroreduction of $O_2$, to 'water' at 0.6 V(SHE) at pH 7 on the wired Pleurotus ostreatus laccase cathode. Biosen. Bioetec., 17, 1071-1074, 2002 https://doi.org/10.1016/S0956-5663(02)00100-8
  27. Jung, H., Xu, F. and Li, K. : Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrun LKY-7. Enzym. Microbial Technol., 30, 161-168, 2002 https://doi.org/10.1016/S0141-0229(01)00485-9