• Title/Summary/Keyword: Cutting-Simulation

Search Result 463, Processing Time 0.03 seconds

Assessment of Penetration Performance and Optimum Design of Shaped Charge Device for Underwater Steel Cutting (수중 강재절단을 위한 성형폭약 장치 최적설계 및 관입성능 평가)

  • Ko, Young-Hun;Kim, Seung-Jun;Kim, Jung-Gyu;Yang, Hyung-Sik;Kim, Hee-Do;Park, Hoon;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, several underwater steel cutting tests and AUTODYN numerical analyses were conducted to evaluate the penetration performance of a shaped charge device. Parameter analyses for the contribution rate were conducted by using the robust design method. The parameters adopted in this study were chamber type, stand-off, and wire setting, each of which had three levels in the analysis. Analysis results showed that the contribution rate was most affected by the stand-off, followed by the chamber type and wire setting. Experiments of underwater steel cutting were conducted at water depth of 25m. As expected, the experiments and numerical simulation showed similar results for underwater steel cutting performance, and thus the feasibility of the shaped charge device for underwater steel cutting at deep water depth was verified.

DRAM Package Substrate Using Via Cutting Structure (비아 절단 구조를 사용한 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.76-81
    • /
    • 2011
  • A new via cutting structure in 2-layer DRAM package substrate has been fabricated to lower its power distribution network(PDN) impedance. In new structure, part of the via is cut off vertically and its remaining part is designed to connect directly with the bonding pad on the package substrate. These via structure and substrate design not only provide high routing density but also improve the PDN impedance by shortening effectively the path from bonding pad to VSSQ plane. An additional process is not necessary to fabricate the via cutting structure because its structure is completed at the same time during a process of window area formation. Also, burr occurrence is minimized by filling the via-hole inside with a solder resist. 3-dimensional electromagnetic field simulation and S-parameter measurement are carried out in order to validate the effects of via cutting structure and VDDQ/VSSQ placement on the PDN impedance. New DRAM package substrate has a superior PDN impedance with a wide frequency range. This result shows that via cutting structure and power/ground placement are effective in reducing the PDN impedance.

Design and Implementation of a Cloth Simulation System based on Hierarchical Space Subdivision Method (계층적 공간 분할 방법을 이용한 의복 시뮬레이션 시스템의 설계 및 구현)

  • Kim Ju-Ri;Cho Jin-Ei;Joung Suck-Tae;Lee Yong-Ju;Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.109-116
    • /
    • 2004
  • This paper describes a cloth simulation system for dressing 3D virtual human model with different pieces of clothing. The garments are constructed of cutting patterns seamed together. The system reads a body file and a cutting pattern file and produces a new model dressed with the specified garment by using a physical simulation based on a mass-spring model. For the realistic cloth simulation, it performs collision detection and response between triangles of the 3D human model and the garment. Because the number of triangles of a human model is very large. the collision detection and response requires a lot of time. To overcome this problem, we propose a pruning method which decreases the number of collision detection and response by a space-subdivision method. Experimental results show that the system produces realistic images and makes it possible to sew a garment around a virtual human body in several seconds.

  • PDF

A Study on the Simulation Analysis of Nozzle Length and Inner Spiral Structure of a Waterjet (워터젯 노즐의 길이와 내부 나선 구조 유무에 따른 유체거동에 관한 전산해석)

  • Gwak, Cheong-Yeol;Shin, Bo-Sung;Go, Jeung-Sang;Kim, Moon-Jeong;Yoo, Chan-Ju;Yun, Dan-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.118-123
    • /
    • 2017
  • It is well known that water jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics, and composite materials because of some advantages, such as heatless and non-contacting cutting different from the laser beam machining. In this paper, we proposed the simulation model of waterjet by lengths and the inner spiral structure of the nozzle. The simulation results show that the outlet velocity of the nozzle is faster than the inlet. Furthermore, we found rapid velocity reduction after passing through the outlet. The nozzle of diameter ${\phi}500$ and length 70mm, shows the optimal fluid width and velocity distribution. Also, the nozzle with inner spiral structure shows a Gaussian distribution of velocity and this model is almost twice as fast as the model without spiral structure, within the effective standoff distance (2.5 mm). In the future, when inserting abrasive material into the waterjet, we plan to analyze the fluid flow and the particle behavior through a simulation model.

A simulation of production planning strategies for the improvement of a manufacturing process (제조공정 개선을 위한 생산계획 평가 시뮬레이션)

  • 고종영
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.2
    • /
    • pp.87-100
    • /
    • 1999
  • A manufacturing environment without a computerized system causes numerous problems, since many important decisions are made based on the experience of veteran staffs. Especially, when a strategy for the improvement of manufacturing efficiency is considered, it is hard to predict the effect of the strategy. A solution to the problem without large investment of the computerized system is the simulation study. This paper shows the modeling and simulation based on DEVS(Discrete Event System Specification). Two types of models are implemented, one for representing the current production strategy and the other for the new strategy. The new strategy is expressed as priority rules within the model. The process in concern is the metal grating production process in which the size of the group, for applying a specific cutting and scheduling strategies, is one of the important factors in improving the production efficiency. Some reliable criteria for the evaluation related to the production effeciency are established from the simulation study.

  • PDF

A Study on Post-Processing and Machine Simulation of AC Type 5-Axis Machine Tool for Machining of Mold Surface (금형 곡면 가공을 위한 AC타입 5축 가공기의 포스트프로세싱 및 머신 시뮬레이션에 관한 연구)

  • Yun, Il-Woo;Hwang, Jong-Dae;Ko, Dae-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.30-35
    • /
    • 2021
  • In this study, a machine simulation system was built using the actual scale of an AC-type 5-axis machine tool for mold surface machining that can be used in applications, such as, modeling and machine building, stroke, and collision detection. The validity of the 5-axis machine simulation system was verified by performing tool path generation, post-processing, machine simulation, prototype motion simulation, and an actual cutting experiment. This entire process was intended to activate the 5-axis machining in mold surface machining.

Study on the Architecture of Combat Training Center LVC-System (과학화 전투훈련장 LVC-체계의 상위 구조 연구)

  • Choi, Sang-Yeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.80-87
    • /
    • 2008
  • The LVC(Live, Virtual, Constructive) system of CTC(Combat Training Center) is at the very cutting edge of modeling and simulation technology, which has become widely accepted an enabler for a new military training transformation. In this paper, the architecture of LVC system is proposed for the Korean brigade-level CTC, and high level operational architecture, system architecture, and technical standard architecture are suggested.

Optimum Range Cutting for Packet Classification (최적화된 영역 분할을 이용한 패킷 분류 알고리즘)

  • Kim, Hyeong-Gee;Park, Kyong-Hye;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.6
    • /
    • pp.497-509
    • /
    • 2008
  • Various algorithms and architectures for efficient packet classification have been widely studied. Packet classification algorithms based on a decision tree structure such as HiCuts and HyperCuts are known to be the best by exploiting the geometrical representation of rules in a classifier. However, the algorithms are not practical since they involve complicated heuristics in selecting a dimension of cuts and determining the number of cuts at each node of the decision tree. Moreover, the cutting is not efficient enough since the cutting is based on regular interval which is not related to the actual range that each rule covers. In this paper, we proposed a new efficient packet classification algorithm using a range cutting. The proposed algorithm primarily finds out the ranges that each rule covers in 2-dimensional prefix plane and performs cutting according to the ranges. Hence, the proposed algorithm constructs a very efficient decision tree. The cutting applied to each node of the decision tree is optimal and deterministic not involving the complicated heuristics. Simulation results for rule sets generated using class-bench databases show that the proposed algorithm has better performance in average search speed and consumes up to 3-300 times less memory space compared with previous cutting algorithms.

A study on the simulation for chatter vibration stability improvement of end milling process (엔드밀링 채터 안정성 개선을 위한 시뮬레이션)

  • Hwang, Joon;Lee, Won-Kuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • End milling process is one of the broadly used manufacturing process for precision machined parts and products. Machining performance is often limited by chatter vibration at the tool-workpiece interface. Chatter vibration is a type of machining self-excited vibration which originated from the variation in cutting forces and the flexibility of the machine tool structure. Even though lots of cutting tooling methods are developed and used in machining process, precise analysis of cutting tooling effect in view of chatter vibration behavior. This study presents numerical and experimental approaches to verify and effects of various cutting parameters to affect to chatter vibration stability. Acquired knowledge from this study will apply the optimal cutting conditions to improve a machining process.

A Study on the Simulation for Prediction of Cutting Force in Milling Process (밀링가공 시 절삭력 예측을 위한 시뮬레이션 연구)

  • Beak, Seung Yub;Kong, Jung Shik;Jung, Sung Taek;Kim, Seong Hhyun;Jin, Da Som
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.353-359
    • /
    • 2017
  • The classical computer numerical control (CNC) machine is widely used for mold making in various industries. However, while improving the process, it has a negative effect on production quality and worker safety. As a result, the complaints of workers have increased and production quality has decreased. Therefore, we found optimizing cutting conditions to mold industrials for cutting conditions commonly used. However, the problem is the insert tool geometric modeling. In this study, the modeling of an insert tool was performed using the Solidworks program. The insert tool model was imported into the analysis application AdvantEdge, which predicted cutting forces, tool stress, and temperature.