• 제목/요약/키워드: Cutting position

검색결과 236건 처리시간 0.024초

리니어 모터를 이용한 척킹 컴플라이언스 보상 (Chucking Compliance Compensation by Using Linear Motor)

  • 이선규;이진호
    • 대한기계학회논문집A
    • /
    • 제26권1호
    • /
    • pp.15-22
    • /
    • 2002
  • This paper introduces a compensating system for machining error, which is resulted from chucking with separated jaws. In machining the chucked cylindrical workpiece, the deterioration of machining accuracy, such as out-of-roundness is inevitable due to the variation of the radial compliance of the chuck workpiece system which is caused by the position of jaws with respect to the direction of the applied force. To compensate the chucking compliance induced error, firstly roundness profile of workpiece due to chucking compliance after machining needs to be predicted. Then using this predicted profile, the compensated tool feed trajectory can be generated. And by synchronizing the cutting tool feed system with workpiece rotation, the chucking compliance induced error can be compensated. To satisfy the condition that the cutting tool feed system must provide high speed and high position accuracy, brushless linear DC motor is used. In this study, firstly through the force-deflection experiment in workpiece chucked lathe, the variation of radial compliance of chuck workpiece system is obtained. Secondly using the mathematical equation and cutting experiment result, the predicted profile of workpiece and its compensation tool trajectory are generated. Thirdly the configuration of compensation system using linear motor is introduced, and to improve the system performance, PID controller is designed. Finally the tracking performance of system is examined by experiment. Through the real cutting experiment, roundness is significantly improved.

High-power fiber laser cutting parameter optimization for nuclear Decommissioning

  • Lopez, Ana Beatriz;Assuncao, Eurico;Quintino, Luisa;Blackburn, Jonathan;Khan, Ali
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.865-872
    • /
    • 2017
  • For more than 10 years, the laser process has been studied for dismantling work; however, relatively few research works have addressed the effect of high-power fiber laser cutting for thick sections. Since in the nuclear sector, a significant quantity of thick material is required to be cut, this study aims to improve the reliability of laser cutting for such work and indicates guidelines to optimize the cutting procedure, in particular, nozzle combinations (standoff distance and focus position), to minimize waste material. The results obtained show the performance levels that can be reached with 10 kW fiber lasers, using which it is possible to obtain narrower kerfs than those found in published results obtained with other lasers. Nonetheless, fiber lasers appear to show the same effects as those of $CO_2$ and ND:YAG lasers. Thus, the main factor that affects the kerf width is the focal position, which means that minimum laser spot diameters are advised for smaller kerf widths.

절삭공정 모니터링을 위한 이송모터의 주축모터 전류 (Feed and spindle motor currents as monitoring parameters in cutting process)

  • 오영탁;김기대;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.555-559
    • /
    • 2001
  • Feed and spindle motor currents are used toi monitor the cutting process practically. The sensitivity of spindle drive system is lower than that of feed drive system, but the cutting torque is represented well by the spindle motor current. During multi-axis cutting, it is difficult to calculate the resultant cutting force using feed motor currents, because each feed force is reflected by each axis feed motor current with different time delay. It is also difficult to compensate the frictional torque using the feed motor current, because the magnitude of the frictional torque is dependent of the feedrate, table position, and cutting direction. On the other hand, cutting torque can be estimated well using spindle motor current which is independent of the cutting direction.

  • PDF

향상된 절삭력 예측을 위한 Size Effect 모델의 개발 (Development of the Size Effect Model for More Accurate Cutting Force Prediction)

  • 윤원수;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.995-1000
    • /
    • 2000
  • In this paper. a mechanistic model is first constructed to predict three-dimensional cutting forces, and the uncut chip th thickness is calculated by following the movements of the position of the center of a cutter, which varies with the nominal feed, cutter deflection and runout. For general implementation to a real machining, this paper presents the method that determines constant cutting force coefficients, irrespective of the cutting conditions or cutter rotation angles. In addition, this study presents the approach which estimates runout-related parameters. the runout offset and its location angle, using only one measurement of cutting forces. For more accurate cutting force predictions, the size effect has to be considered in the cutting force model. In this paper, two approximate methods are suggested since the strict approach is practically impossible due to a measurement problem. The size effect is individually considered for narrow and wide cuts.

  • PDF

CNC 볼엔드밀링 공정에서 2자유도 제어기를 이용한 절삭력 제어 (Cutting Force Control Using A Two Degree-of-Freedom Controller in Ball-end Milling Processes)

  • 양호석;심영복;이건복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.219-224
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant fled speed. The second is a simultaneous control of feed and spindle speed. Those are confirmed to work properly. Especially the latter shows a faster response and we'll be evaluated to pare away workpiece by simultaneous control of position and cutting farce sooner or later.

  • PDF

CAD 모델에 기초한 모사절삭을 통한 가상절삭 시스템 개발 (Development of a Virtual Machining System by a CAD Model Based Cutting Simulation)

  • 배대위;고태조;김희술
    • 한국생산제조학회지
    • /
    • 제8권3호
    • /
    • pp.83-91
    • /
    • 1999
  • In this paper, we suggest a virtual machining system that can simulate cutting forces of ball end milling at the stage of part design. Cutting forces, here, are estimated from the machanistic model that uses the concept of specific cutting farce coefficient. To this end, we need undeformed chip thickness which is used for calculating chip load. It is derived from the Z-map data of a CAD model. That is, chip load is the height difference between the cutting tool and the workpiece at an arbitrary position. The tool contact point is referred from the cutter location data. On the other hand, the workpiece height is acquired from the Z-map model of a CAD data. From the experimental verification, we can simulate machining process effectively to the slot and the side cutting of ball end mill.

  • PDF

삽목시기, 삽수 채취 부위 및 마디수가 겨울딸기 지삽의 발근에 미치는 영향 (Several Factors Affecting to Rooting of Stem Cuttings in Rubus buergeri Miquel)

  • 강영길;고미라;강시용;류기중
    • 한국약용작물학회지
    • /
    • 제13권3호
    • /
    • pp.77-80
    • /
    • 2005
  • 2002년 6월 26일, 8월 3일 및 9월 4일에 당년 발생한 덩굴에서 정부 중부 기부의 2마디씩 채취하여 삽목하였고, 2002년 7월 10일에 삽수의 마디수를 $1{\sim}4$개로 달리하여 삽목하여 겨울딸기의 발근 및 신초생육을 조사한 결과는 다음과 같다. 발근율은 8월 2일 삽목구에서 69.6%로 가장 높았고 근장은 6월 26일 삽목구에서 23.1 cm로 가장 길었다. 9월 4일 삽목구의 발근율 및 신초 생육이 현저히 떨어졌다. 삽수 채취 부위별 발근율은 덩굴 중간부위에서 55.4%로 가장 높았으며 그 다음이 정단부위에서 45.6%이었고 기부에서 25.4%로 가장 낮았다. 다른 형질들은 삽수 채취부위에 따른 차이가 없었다. 발근율과 신초발생률은 삽수마디수에 따른 차이가 없었으나 삽수당 근수 및 뿌리 건물중, 신초 생육은 삽수마디수가 많을수록 증가되었다.

장미 공장생산시스템 적용을 위한 Single-node 삽목묘의 잠재생장 (Estimating Potential Growth of Single-node Cuttings for Applying Single-stemmed Rose to Factory System)

  • Kim, Wan-Soon;Lee, Yong-Beom;Nam, Yoon-Il;Kim, Hyung-Jun
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 2001년도 봄 학술발표논문집
    • /
    • pp.79-80
    • /
    • 2001
  • This study was conducted to estimate rooting and shooting in single-node cuttings (SNC) of roses 'Rote Rose' and 'Teresa' to several conditions: growth stage, node position, and leaf area of cutting, so that single-stemmed roses (SSR) could be used in rose factory system. There was no effects of growth stage of flowering shoots far cutting on the rooting and shooting of SNC in both of the two cultivars. However, the node position and leaf area of cuttings significantly affected the rooting and shooting of SNC: the speed was accelerated with larger leaf area and upper node cuttings, but the rate showed little difference as above 95%. Based on above results, rooting and shooting in SNC was forced by leaf area mainly, followed by node positions. On the other hand, flowering rate of shoots from SNC was improved mainly with larger leaf area in cuttings. Shoots of 45cm-longer, qualified for rose factory system, increased with lower node and larger leaf area significantly. Therefore, it could be said that the potential growth of shoots from SNC would be influenced mainly by leaf area, followed by node position on cutting.

  • PDF

2날 엔드밀 슬롯 가공시 칩두께 모델의 개선 (Improvement of Chip Thickness Model in 2-flutes Slot End Milling)

  • 이동규;이기용;이근우;오원진;김정석
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.32-38
    • /
    • 2005
  • Generally, cutting force models use a sin function method to calculate chip thickness. In slot end milling, the error from a sin function method is much bigger than other machining because a tool rotation angle in cutting is much larger. Thus in this paper, a new method to calculate chip thickness was suggested and evaluated. In a new method, tool position data according to tool rotation are checked and stored so that it is possible correct chip thickness is calculated. Cutting force waveforms simulated from a sin function method and a new method and measured waveforms from experiments were compared and error percentages were obtained. Finally, a new method had good results for simulating cutting force in slot end milling.

자석식 자동 파이프 절단기를 위한 학습제어기 (Learning Control of Pipe Cutting Robot with Magnetic Binder)

  • 김국환;이성환;임성수
    • 제어로봇시스템학회논문지
    • /
    • 제12권10호
    • /
    • pp.1029-1034
    • /
    • 2006
  • In this paper, the tracking control of an automatic pipe cutting robot, called APCROM, with a magnetic binder is studied. Using magnetic force APCROM, a wheeled robot, binds itself to the pipe and executes unmanned cutting process. The gravity effect on the movement of APCROM varies as it rotates around the pipe laid in the gravitational field. In addition to the varying gravity effect other types of nonlinear disturbances including backlash in the driving system and the slip between the wheels of APCROM and the pipe also cause degradation in the cutting process. To maintain a constant velocity and consistent cutting performance, the authors adopt a repetitive learning controller (MRLC), which learns the required effort to cancel the tracking errors. An angular-position estimation method based on the MEMS-type accelerometer is also used in conjunction with MRLC to compensate the tracking error caused by slip at the wheels. Experimental results verify the effectiveness of the proposed control scheme.