• Title/Summary/Keyword: Cutting performance

Search Result 824, Processing Time 0.195 seconds

The Effect of the Cutting Parameters on Performance of WEDM

  • Tosun, Nihat
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.816-824
    • /
    • 2003
  • In this study, variations of cutting performance with pulse time, open circuit voltage, wire speed and dielectric fluid pressure were experimentally investigated in Wire Electrical Discharge Machining (WEDM) process. Brass wire with 0.25 mm diameter and AISI 4140 steel with 10 mm thickness were used as tool and work materials in the experiments. The cutting performance outputs considered in this study were surface roughness and cutting speed. It is found experimentally that increasing pulse time, open circuit voltage, wire speed and dielectric fluid pressure increase the surface roughness and cutting speed. The variation of cutting speed and surface roughness with cutting parameters is modeled by using a regression analysis method. Then, for WEDM with multi-cutting performance outputs, an optimization work is performed using this mathematical models. In addition, the importance of the cutting parameters on the cutting performance outputs is determined by using the variance analysis (ANOVA).

On-Site Cutting Performance Analysis of Conventional Pavement Cutter for Deriving Performance Standard Value (성능 기준값 도출을 위한 재래식 도로절단기의 현장 절단성능 분석)

  • Kim, Kyoon-Tai
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.243-244
    • /
    • 2023
  • Noise, dust, etc. caused by road pavement cutting work, which frequently occurs in new construction or reconstruction of buildings, construction of complexes, etc., are environmental hazards and cause civil complaints. Recently, an eco-friendly pavement cutter is being developed to make the work low in noise and dust, however, the on-site cutting performance of the equipment has not been quantified. In this study, in order to derive a standard value for comparing the cutting performance of the eco-friendly cutter under development, a conventional pavement cutter was applied to four residential sites in Seoul and Gyeonggi-do, and the cutting data was collected. As a result of analyzing the collected data, the conventional pavement cutter showed a cutting performance of 12.3 to 20.2 sec/m, and the average was 27.2 sec/m. In the future, additional cutting experiments with various mixing ratios, materials, and depths are planned to confirm the performance of conventional pavement cutter in more detail.

  • PDF

An Experimental Verification on the Development of an Innovative Diamond Wire Saw Cutting Technology (새로운 다이아몬드 와이어 쏘 절단 기술 개발에 관한 실험적 검증)

  • Park, Jong Hyup;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2018
  • This paper introduces a innovative diamond wire saw cutting technology and its experimental verification that can be utilized for cutting heavy structures. While conventional diamond wire saw cutting technologies such as water cooled cutting method and dry cutting method cause severe environmental problems due to generating massive concrete sludge or dust scattering, the proposed method can eliminate those problems considerably. Through extensive experiments using heavy structure test bed and real bridge pier structure, comprehensive analysis and comparative evaluation about various cutting methods were performed. As a result, the innovative diamond wire saw cutting method could achieve a similar cutting and cooling performance to the water cooled cutting method without generating concrete sludge and it showed an improved cutting and cooling performance to the dry cutting method without dust scattering. Consequently it is confirmed that the suggested cutting technology can be a promising environment-friendly alternative in the field of heavy structure dismantling.

Effect of Toughness Index of Diamond Abrasives on Cutting Performance in Wire Sawing Process (와이어쏘 공정에서 다이아몬드 입자의 인성지수가 절단 성능에 미치는 영향)

  • Kim, Do-Yeon;Lee, Tae-Kyung;Kim, Hyoung-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.675-682
    • /
    • 2020
  • Multi-wire sawing is the prominent technology employed to cut hard material ingots into wafers. This paper aimed to research the effect of diamond toughness index on the cutting performance of electroplated diamond wire. Three different toughness index of diamond abrasives were used to manufacture electroplated diamond wires. The cutting performance of electroplated diamond wire is verified through experiments, in which sapphire ingot are cut using single wire sawing machine. A single wire saw for constant load slicing is developed for the cutting performance evaluation of electroplated diamond wire. Choosing the cutting depth, total cutting depth, cutting force and wear of electroplated diamond wires as evaluation parameters, the performance of electroplated diamond wire is evaluated. The results of this study showed that there was a significant direct relationship between the toughness index of diamond abrasives and the cutting performance. Results demonstrated that diamond abrasive with a high toughness index showed higher cutting performance. However, all diamond abrasives showed similar cutting performance under low load conditions. The results of this paper are useful for the development of cutting large diameter ingots and cutting high hardness ingots at high speed.

Mechanical Properties and Cutting Performance of Ti(CN) Based Carbonitride Ceramics (Ti(CN)기 탄화물질 세라믹스의 기계적 특성과 절삭성능)

  • Park, Dong-Su;Lee, Yang-Du;Jeong, Tae-Ju;Gang, Sin-Hu
    • 연구논문집
    • /
    • s.28
    • /
    • pp.193-207
    • /
    • 1998
  • Fully dense THCN) based carbonitride ceramics were fabricated by pressureless sintering. During sintering, solid solutions were formed from the ceramic ingredients. The ceramics exhibited microvickers hardness of 1560-2050kgf/mm2, fracture toughness of 3.0-5.4 MPa $m^(1/2)$, and three point flexural strength of 645-1072 MPa. Some of the ceramics were shaped in a cutting tool, and the cutting performance was evaluated. In case of cutting SCM440 alloy steel, the ceramics showed better performance than the commercially available alumina-titanium carbide ceramic cutting tool. Considering the excellent productivity of pressureless sintering compared with other densification methods and their cutting performance, this new class of ceramics are very promising for wear resistant applications.

  • PDF

A Study on the Cutting Pertormance and Wear Characteristics of CBN Ball End-Mill (CBN 볼 엔드밀의 절삭 및 마모특성에 관한 연구)

  • 이기우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.107-113
    • /
    • 1996
  • This paper presents the experimental results on the cutting performance and wear characteristics of CBN ball end-mill. The influence of cutting fluids and rake angles on the tool performance is reported. It i found that the neat cutting oil is beneficial to obtain good surface roughness and 30 .deg. of rake angle gives the minimum tool wear. The microscopic investigations reveal that the coated carbide endmills wear by fracture whereas the CBN endimills wear by attritious mode.

  • PDF

Cutting Performance of Submicron Cermet Tools and Their Mechanical Properties (초미립 서멧 절삭공구의 절삭성능과 기계적 특성)

  • Ahn, Dong-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.182-189
    • /
    • 2001
  • TiCN based submicron cermet and similar ISO grad of the conventional cermets with TiCN of different particle size were produced by PM process, and their microstructure, mechanical properties and cutting performance were compared. The microstructure of submicron cermet was more homogeneous and showed much finer microstructure, resulting in better hardness and fracture toughness. The submicron cermet tools achieved excellent cutting performance such as wear resistance and toughness in comparison with two grades of the conventional cermets in millimg test. The relationship between microstrucure, mechanical properties and cutting performance of these cermet tools was discussed. The submicron cermet tools revealed for their potential to wide application range and interrupt cutting because of their superior wear resistance and toughness combinations.

  • PDF

Field Working Data Analysis of Sludge Suction Type Pavement cutter to Reduce Scattered Dust (비산먼지 저감을 위한 슬러지 흡입식 도로절단기의 현장 작업 데이터 분석)

  • Kim, Kyoon-Tai;Jun, Younghun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.231-232
    • /
    • 2022
  • Pavement cutting work frequently occurs in new building construction, reconstruction, and complex construction, and this work causes a lot of noise and dust. Eco-friendly pavement cutters are being developed to reduce noise and dust in this work, however the on-site cutting performance of the equipment under development has not been quantified. In this study, the eco-friendly pavement cutter was applied to four residential areas in Seoul and Gyeonggi-do, and its cutting performance was quantified. As a result of the analysis, the eco-friendly pavement cutter showed cutting performance of 20.1~46.9sec/m, and the average was 33.5sec/m. In the future, we plan to conduct additional cutting experiments with various mixing ratios, materials, and depths to confirm the performance of eco-friendly road cutters in more detail.

  • PDF

Design Improvement and Performance Evaluation of 20kHz Horn for Ultrasonic Cutting (20kHz 초음파 커팅용 혼의 설계 개선과 성능평가)

  • Seo, Jeong Seok;Lee, Yoon Jeong;Kim, Jin Wook;Park, Dong Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.135-140
    • /
    • 2013
  • Ultrasonic cutting is a kind of eco-technique and cost-effective technique to be used for cutting of various materials such as baked product, fresh/frozen food, rubber, textile, wood, bone, etc. The performance of ultrasonic cutting is affected by design of cutting horn and cutting conditions. Specially the design of horn to resonate at the longitudinal direction is most important. To analyze the problems from which cracking and noise are often generated with conventional cutting horn, FEA is carried out, and then improved cutting horn which can reduce maximum stress and stress concentration is designed. Vibration characteristics, resonant frequency, gain, and amplitude uniformity of the cutting horn designed optimally are evaluated through FFT analysis and compared with those of conventional cutting horn.

A Study on the Optimum Cutting Conditions of CBN Ball Endmill- I (CBN 볼 엔드밀의 최적 절삭조건에 관한 연구- I)

  • 이기우;최상우;이종찬;강추욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.20-25
    • /
    • 1996
  • The needs to machine hardened steels with high productivity and good surface integrity have been increased in the dies & molds industry. This paper presents some experimental results on the CBN ball endmilling for hardened tool steel. This investigation concerns on the effects of cutting speed and cutting fluids on the cutting performance such as cutting forces, tool wear, and surface finish. The wear of CBN ball endmill for each cutting conditions were also examined through the microscopic observation. It has been found out that the higher cutting speeds with cutting fluids result in better cutting performance.

  • PDF