• 제목/요약/키워드: Cutting force prediction

검색결과 126건 처리시간 0.026초

공구변형을 고려한 볼엔드밀의 절삭력과 가공오차 예측 (Prediction of Cutting Force and Machinig Error in the Ball-end Milling Process)

  • 조필주;김규만;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1003-1008
    • /
    • 1997
  • In this paper, the prediction of cutting force and tool deflection in the ball-end milling process are studied. Identifying various cutting region using Z-map, cutting force in the ball-end milling process can be predicted. Cutting force deflects the tool and the tool deflection changes the cutting force. Tool deflection is included in the cutting force prediction. Tool deflecition also causes machining error of the machined surface. A series of experiments were performed to verify the simulated cutting force and machining error.

  • PDF

계단형상 체적의 엔드밀 가공시 절삭력 변화 특성에 관한 연구 (Cutting Force Variation Characteristics in End Milling of Terrace Volume)

  • 맹희영
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.489-495
    • /
    • 2013
  • This study analyzed thevariation in the cutting force when the cutting area of a terrace volume is machined, which is generally left after the rough cutting of a sculptured surface. The numerically simulated results for the cutting forces are compared with cutting force measurements by considering the theoretical prediction of the cutting area formation and specific cutting volume. The variation in the cutting force is measured using a dynamometer installed on a machining center for 19 different kinds of test pieces, which are selected according to the variation in the terrace volume factor, tool diameter factor, and cutting depth factor. As a result, it is verified that the cutting forces evaluated by the numerical analysis coincide with the measured cutting forces, and it is proposed as a practical cutting force prediction model.

엔드밀링 가공에서 절삭력 계수 데이터베이스 구현을 위한 일반화된 방법론 (Generalized Method for Constructing Cutting Force Coefficients Database in End-milling)

  • 안성호;고정훈;조동우
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.39-46
    • /
    • 2003
  • Productivity and machining performance can be improved by cutting analysis including cutting force prediction, surface error prediction and machining stability evaluation. In order to perform cutting analysis, cutting force coefficients database have to be constructed. Since cutting force coefficients are dependent on cutting condition in the existing research, a large number of calibration tests are needed to obtain cutting force coefficients, which makes it difficult to build the cutting force coefficients database. This paper proposes a generalized method for constructing the cutting force coefficients database us ins cutting-condition-independent coefficients. The tool geometry and workpiece material were considered as important components for database construction. Cutting force coefficients were calculated and analyzed for various helix and rake angles as well as for several workpiece. Furthermore, the variation of cutting force coefficients according to tool wear was analyzed. Tool wear was found to affect tool geometry, which results in the change of cutting force coefficients.

엔드밀의 상향절삭시 절삭력 예측 (Prediction of Cutting Force in Up end Milling)

  • 이영문
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.3-7
    • /
    • 2000
  • In this study, a modified model for prediction of cutting force components in up end milling process is presented. Using this cutting force components of 4-tooth endmils with various helix angles have been predicted. Predicted value of cutting force components are well coincide with the measured ones. As helix angle increases overlapping effects of the active cutting edges increase and as a result the amplitudes of cutting force components decrease and the specific cutting energy consumed also decreases

  • PDF

CNC 가공에서 절삭력 예측과 조절을 위한 절삭 시뮬레이션 시스템 개발 (Development of Cutting Simulation System for Prediction and Regulation of Cutting Force in CNC Machining)

  • 고정훈;이한울;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2002
  • This paper presents the cutting simulation system for prediction and regulation of cutting force in CNC machining. The cutting simulation system includes geometric model, cutting force model, and off-line fred rate scheduling model. ME Z-map(Moving Edge node Z-map) is constructed for cutting configuration calculation. The cutting force models using cutting-condition-independent coefficients are developed for flat-end milling and ball-end milling. The off-line feed rate scheduling model is derived from the developed cutting force model. The scheduled feed rates are automatically added to a given set of NC code, which regulates the maximum resultant cutting force to the reference force preset by an operator. The cutting simulation system can be used as an effective tool for improvement of productivity in CNC machining.

  • PDF

엔드밀의 하향절삭시 절삭력 예측 (Prediction of Cutting Force in Down End Milling)

  • 이영문;이선호;태원익
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.907-911
    • /
    • 2000
  • In this study, a modified model for prediction of cutting force components in down end milling process is presented. Using this cutting force components of 4-tooth endmills with various helix angles have been predicted. Predicted values of cutting force components are well coincide with the measured ones. As helix angle increases overlapping effects of the active cutting edges increase and as a result the amplitudes of cutting force components decrease.

  • PDF

Z-map을 이용한 임의의 절삭영역에서의 볼 엔드밀의 절삭력 예측에 관한 연구 (The Study on the Cutting Force Prediction in the Ball-End Milling Process at the Random Cutting Area using Z-map)

  • 김규만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.125-129
    • /
    • 1996
  • In this study, a method is proposed for the cutting force prediction of Ball-end milling process using Z-map is proposed. Any types of cutting area generated from previous cutting process can be expressed in z-map data. Cutting edge of a ball-end mill is divided into a set of finite cutting edges and the position of this edge is projected to the cross-section plane normal to the Z-axis. Comparing this projected position with Z-map data of cutting area and determining whether it is in the cutting region, total cutting force can be calculated by means of numerical integration. A series of experiments such as side cutting and upward/downard cutting was performet to verify the simulated cutting force.

  • PDF

볼엔드밀 경사면 가공에서 절삭력 맵을 이용한 평균절삭력 예측 (Mean Cutting Force Prediction in Ball-End Milling of Slanted Surface Using Force Map)

  • 김규만;주종남
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.212-219
    • /
    • 1998
  • During machining of dies and molds with sculptured surfaces. the cutter contact area changes continuously and results in cutting force variation. In order to implement cutting force prediction model into a CAM system, an effective and fast method is necessary. In this paper. a new method is proposed to predict mean cutting force. The cutter contact area in the spherical part of the cutter is obtained using Z-map, and expressed by the grids on the cutter plane orthogonal to the cutter axis. New empirical cutting parameters were defined to describe the cutting force in the spherical part of cutter. Before the mean cutting force calculation, the cutting force density in each grid is calculated and saved to force map on the cutter plane. The mean cutting force in an arbitrary cutter contact area can be easily calculated by summing up the cutting force density of the engaged grid of the force map. The proposed method was verifed through the slotting and slanted surface machining with various inclination angles. It was shown that the mean force can be calculated fast and effectively through the proposed method for any geometry including sculptured surfaces with cusp marks and holes.

  • PDF

런아웃을 고려한 측면 엔드밀 가공의 절삭력 분석 (An Analysis of the Cutting Force for Peripheral End-milling Considering Run-out)

  • 김종도;윤문철;김병탁
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.7-12
    • /
    • 2012
  • The cutting force for peripheral end-milling considering run-out property was estimated and its result was compared with that of measured one. An experimental coefficient modelling was used for the formulation of theoretical end-milling force by considering the specific cutting force coefficient. Also, the specific cutting force, that is the multiplication of specific cutting force coefficient and uncut chip thickness, was used for the prediction of end-milling force. The end-milling force mechanics with run-out was presented for the estimation of theoretical force in peripheral end-milling by considering the geometric shape of the workpiece part. As a result, the estimated end-milling force shows a good consistency with the measured one. And it can be used for the prediction of force history in end-milling with run-out which incurs different start and exit immersion angle in entering and exiting condition.

RBF/ART1을 이용한 선삭에서 절삭력을 이상신호 검출 (Fault Detection of Cutting Force in Turning Process using RBF/ART-1)

  • 임상만;이명재;유봉환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.15-19
    • /
    • 1994
  • The application of neural network for fault dection of cutting force in turning was introduced. This monitoring system consist of a RBF predicton model and a ART-1 pattern classifier. RBF prediction model predict a cutting force signal. Prediction error of predictor is used for a input vector of ART-1 pattern classifier. Prediction error could be successfully performed to fault signal monitoring of ART-1 pattern classifier.

  • PDF