• Title/Summary/Keyword: Cutting flute

Search Result 13, Processing Time 0.021 seconds

Effect of cutting flute length and shape on insertion and removal torque of orthodontic mini-implants (교점용 미니 임플랜트의 cutting flute의 길이 및 형태에 따른 식립 및 제거 토크의 비교)

  • Yun, Soon-Dong;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.39 no.2
    • /
    • pp.95-104
    • /
    • 2009
  • Objective: The purpose of this study was to evaluate the effect of length and shape of cutting flute on mechanical properties of orthodontic mini-implants. Methods: Three types of mini-implants with different flute patterns (Type A with 2.6 mm long flute, Type B with 3.9 mm long and straight flute, Type C with 3.9 mm long and helical flute) were inserted into the biomechanical test blocks (Sawbones Inc., USA) with 2 mm and 4 mm cortical bone thicknesses to test insertion and removal torque. Results: In 4 mm cortical bone thickness, Type C mini-implants showed highest maximum insertion torque, then Type A and Type B in order. Type C also showed shortest total insertion time and highest maximum removal torque, but Type A and B didn't showed statistically significant difference in insertion time and removal torque. In 2 mm cortical bone thickness, there were no significant difference in total insertion time and maximum removal torque in three types of mini-implants, but maximum insertion torque of Type A was higher than two other Types of mini-implants. Conclusions: Consideration about length and shape of cutting flute of mini-implant is also required when the placement site has thick cortical bone.

A Study of Three Dimension Cutting;Tipped Twist Drilling (3차원절삭에 관한 연구(초경DRILL의 효율성 증가))

  • Lee, Yeong-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.168-170
    • /
    • 1994
  • Carbide-tipped twist drill of new type which is better than traditional H.S.S twist drill has been developed successfully to drill steel work-pieces with high speed. This new carbide drill consists of a characteristic flature of special shape of cutting edge, chip pocket, and flute. The special design of the chip pocket and the flute guarantees both periodic fracture and smooth transport of chips along the flute. The carbide-tipped twist drill also allows one to apply more drilling force than conventional one and produce holes with high accuracy.

  • PDF

Geometrical Analysis of Helical Groove Machining for Manufacture of Twist Drill (트위스트 드릴제작을 위한 나선형 홈가공의 기하학적인 해석)

  • 고성림
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1643-1653
    • /
    • 1994
  • To facilitate the manufacturing of dull using CNC grinding machine, the simulation of helical groove machining with given wheel profile and setting condition is necessary. Considering the wheel as a collection of thin disks, the flute configuration is predicted in a cross section perpendicular to the axis and the grinding wheel profile is also predicted to machine the desired helical groove with given setting conditions. Two programs for these processes are developed. Using programs interactively, the helical groove machining process can be predicted more accurately. By clarifying the geometrical relation between the shape of cutting edge and the flute configuration in the cross section which is perpendicular to drill axis, it becomes possible to predict the necessary cross sectional shape of wheel for desired drill cutting edge shape. Some factors for the software are considered concerning prediction of accuracy and computing time.

Development of Improved Cutting Force Model for Indexable End Milling Process. (인덱서블 엔드밀링 공정을 위한 향상된 절삭력 모델의 개발)

  • 김성준;이한울;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.237-240
    • /
    • 2004
  • Indexable end mills, which consist of inserts and cutter body, have been widely used in roughing of parts in the mold industry. The geometry and distribution of inserts on cutter body are determined by application. This paper proposes analytical cutting force model for indexable flat end-milling process. Developed cutting force model uses the cutting-condition-independent cutting force coefficients and considers runout, cutter deflection and size effect for the accurate cutting force prediction. Unlike solid type endmill, the tool geometry of indexable endmill is variable according to the axial position due to the geometry and distribution of inserts on the cutter body. Thus, adaptive algorithm that calculates tool geometry data at arbitrary axial position was developed. Then number of flute, angular position of flute, and uncutchip thickness are calculated. Finally, presented model was validated through some experiments with aluminum workpiece.

  • PDF

The effect of drill design on stability and efficacy of dental implants (치과용 임플란트의 안전성과 유효성에 대한 드릴 디자인의 효과)

  • Yoon, Ji-Hoon;Jeon, Gye-Rok;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo
    • The Journal of the Korean dental association
    • /
    • v.53 no.2
    • /
    • pp.132-142
    • /
    • 2015
  • Purpose : The objective of this research was to investigate an optimization of drill design factors for implant stability and efficacy through comparative evaluation by the cutting time, heat generation and initial stability. Materials and Methods : Three design factors were considered for the purpose of drill design optimization; the number of flute(2 flute, 3 flute), helix angle($15^{\circ}$, $25^{\circ}$) and drill tip shape(straight, 2-phase). Design factors were selected through comparative evaluation by temperature change, cutting time and ISQ value. Results : Heat generation and cutting time are influenced by all design factors(p<0.05). Drill tip shape was the only factors which influenced to the largest initial stability(p<0.05). Conclusion : Drills with 2 flutes, 2-phase formed drill tip, and 25 degrees of helix angle exhibit a better performance than other design.

A study on the machinability of Carbon Fiber Reinforced Plastics on tool shape (공구형상에 따른 CFRP(Carbon Fiber Reinforced Plastics) 복합재료의 절삭 특성에 관한 연구)

  • Shin, Bong-Cheul;Kim, Kyu-Bok;Ha, Seok-Jae;Cho, Myeong-W
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.799-804
    • /
    • 2011
  • CFRP(Carbon Fiber Reinforced Plastics) has been used many industries aerospace, automobile, medical device and building material industries, etc. Because it is lighter than other metals and has good properties, such as rigidity, strength and wear. CFRP may be cured integrity. However, it needs postprocessing similar to drilling or endmilling for shape cutting and combination of various material. In this paper, tool dynamometer and accelerometer used to signal analysis for machining properties under various cutting conditions and tool shape changes. In addition, microscope used to verify the machined CFRP surface. As the results, it was found that the cutting force and the vibration were decreased in the increasing of cutting edge (2-flute < 4-flute < composite tool), and the good machined surface can be obtained in this experiments.

A Study on Geometric Definition and 5-Axis Machining of End Mill with Insert Tip (Insert Tip용 End Mill 공구의 형상정의와 5-축 가공에 관한 연구)

  • 조현덕;박영원
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-9
    • /
    • 2002
  • This study describes the geometric characteristics and the 5-axis machining method in order to make end mill cutter coming with insert tips. End mill geometry is consisted of flute part and insert tip part. Flute part modeled by using ruled surfaces with constant helix angle, and insert tip part modeled by rectangular planes containing tapped hole of specified direction in its center. In this study, the modeled insert tip part considered both of a radial rake angle and a axial rake angle, because they were important cutting conditions. In order to machining the virtual end mill defined from geometric characteristics, we programmed a special software to machining the end mill considered in this study. This software can generate NC-codes about following processes, end milling or ball end milling of flute part end milling of rectangular plane, centering of hole, drilling of hole, and tapping of hole. Ant sampled end mills were modeled and machined on 5-axis CNC machining center with two index tables. Since machined end mills were very agreeable to designed end mills, we saw that the method proposed in this study can be very useful for manufacturing of end mill body with insert tip.

Analysis on the Surface Accuracy in according to Geometry of End Mill (엔드밀의 형상에 따른 가공정밀도 해석)

  • 고성림;이상규;김용현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1001-1004
    • /
    • 2000
  • As tools for machining precision components, end mills and ball end mills are widely used. For the end mills have longer cylindrical shape comparing diameter, liable to deflect and induce deterioration of surface roughness. Tool geometry parameters and cutting process have complex relations with each other. So, It is hard to determine hew to select optimal tool geometry. So, to improve the stiffness, relationship between cutting process and tool geometry must be studied. In this study, relations between grinding wheel geometry, setting condition and tool geometry are revealed. For the purpose of studying relations between each parameter, the equivalent diameter of tool has been calculated assuming tool as a simple beam. By the various cutting simulations and experiments, tool geometry and cutting process has been studied.

  • PDF

A combination method of the theory and experiment in determination of cutting force coefficients in ball-end mill processes

  • Kao, Yung-Chou;Nguyen, Nhu-Tung;Chen, Mau-Sheng;Huang, Shyh-Chour
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.233-247
    • /
    • 2015
  • In this paper, the cutting force calculation of ball-end mill processing was modeled mathematically. All derivations of cutting forces were directly based on the tangential, radial, and axial cutting force components. In the developed mathematical model of cutting forces, the relationship of average cutting force and the feed per flute was characterized as a linear function. The cutting force coefficient model was formulated by a function of average cutting force and other parameters such as cutter geometry, cutting conditions, and so on. An experimental method was proposed based on the stable milling condition to estimate the cutting force coefficients for ball-end mill. This method could be applied for each pair of tool and workpiece. The developed cutting force model has been successfully verified experimentally with very promising results.

Development of Software for Determining Grinding Wheel Geometry and Setting Condition in End Mill Manufacturing (엔드밀 제작용 연삭숫돌형상과 가공조건 결정을 위한 프로그램 개발)

  • Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.164-174
    • /
    • 1996
  • As tools for machining precision componants, end mills and ball end mills are widely used. For the end mills have longer cylindrical shape comparing dianeter, they are liable to deflect when machining and induce geometrical error and deterioration of surface roughness. To improve the stiffness and the sharpness of the cutting edge of end mill, a software for manufacturing end mills are developed. The program predicts the result of helical flute grinding and the configuration of cuting edge which is located in cylindrical surface. Furthermore to facilitate the manufacturing end mills using CNC grinding machine, the setting condition which satisfy the geometrical requirements like tool rake angle and stiffness are obtained.

  • PDF