• Title/Summary/Keyword: Cutting Wheel

Search Result 81, Processing Time 0.024 seconds

Stress Distribution around Laser-Welded Cutting Wheels Using a Spherical Indentation (구형압입을 이용한 레이저 용접된 절단 휠의 잔류응력 분포 측정)

  • Lee, Yun-Hee;Lee, Wan-Kyu;Jeong, In-Hyeon;Nahm, Seung-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.125-130
    • /
    • 2008
  • A spherical indentation has been proposed as a nondestructive method of measuring local residual stress field in laser-voided joints. The apparent yield strengths interpreted from the spherical indentation data of as-welded cutting wheel were compared with the intrinsic yield strengths measured at nearly equivalent locations in annealed wheel. Their difference along the distance from the welding line is welding stress distribution because the intrinsic yield strength is invariant regardless of the elastic residual stress. The spherical indentations show that the laser-welded diamond cutting wheel displays a 10 min-wide distribution of the welding residual stress and has peak compressive and tensile stresses in the shank and tip regions, respectively.

The Behavior of Grinding Wheel Wear Using Spectrum Analysis (스펙트럼 해석을 이용한 연삭숫돌 마멸거동)

  • 사승윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.20-24
    • /
    • 1999
  • Grinding System is very difficult to examine closely wear phenomenon or dynamic characterastic because it is very complex and different from a general cutting system, Considering automatization and precision it is very important to examine closely grinding system. In this study grinding wheel surface is acquired by using computer vision system in order to explain wear and loading phenomenon. We investigate the relationship between wear and Fourier spectrum of acquired image and observe the entropy variation in the process of manufacturing.

  • PDF

A study on the Machinability of SSW2 Steel(1st Report) (SSW2의 피삭성에 관한 연구 제1보)

  • 최만성;최대봉
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.105-112
    • /
    • 1992
  • The turning tests with sintered carbide tools have been conducted on typical high strength SSW2 railway wheel steel and its machinability were examined in terms of the cutting resistance, the roughness of turning surface, the chip disposal and others. Some results obtained in this paper are as follows: (1) The cutting resistance is not affected by the cutting speed (in this paper these were 23-78 m/min). (2) The roughness of finished surface is found to be largely dependent on cutting conditions and tool geometry. (3) There exists the explicit relates between the tool geometry cutting conditions (cutting speed, feedrate, and depth of cut) and independent variables(cutting resistance, surface roughness) are derived.

  • PDF

Evaluation on Grinding Force of Ceramic Grinding by the Diamond Wheel (다이아몬드 휠에 의한 세라믹 연삭의 연삭력 평가)

  • 문홍현;김성청;공재향;박병규;소의열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.43-47
    • /
    • 2002
  • In this study, through the experimental results of grinding ratio, grinding force and surface roughness with the obtained wear amount of diamond wheel and ceramic material during the grinding process, the following conclusions could be found. In the case of $Si_3N_4$, the wear of diamond wheel is large while the grinding force is stable and the range of change in surface roughness is small. for the case of $AL_2O_3$ and $ZrO_3$, while the wear of diamond wheel is getting smaller, the grinding force is increasing but the value of surface roughness is decreasing. For grinding with the vitrified bond wheel, it seems that the self-sharpening can be found for $Si_3N_4$ and the glazing effect of the cutting edge for $AL_2O_3$ and $ZrO_3$.

  • PDF

3D Modeling of Ground Surface with Statistical Method (통계적방법을 이용한 연삭표면의 3차원모델링)

  • 김동길;김영태;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.211-219
    • /
    • 2000
  • This paper simulated surface grinding process with statistically simulated grinding wheel topography, considering ridge formation phenomenon when grain scratch workpiece. Wheel grain is modeled as hybrid sphere and cone. Grinding wheel characteristic was evaluated with stylus by expanding the scanning region of the profilometer from a straight line to a plane. Each grain's diameter and semi-angle are assumed as normal distribution, each grain's protrusion height from wheel plane is assumed gamma distribution. So grinding wheel is simulated with grain's position randomly distributed without overlapping. Ground surface is 3-dimensionally simulated considering ridge formation of workpiece by each grain's cutting, and then surface profile and surface roughness parameters are compared with real ground workpiece.

  • PDF

A Study on the Truing of Diamond Wheel for Micro V-shaped Groove Grinding (마이크로 V홈 연삭가공을 위한 다이아몬드숫돌의 V형상 트루잉에 관한 연구)

  • Lee, Joo-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.27-33
    • /
    • 2005
  • This study deals with the truing of diamond wheel fur the manufacture of micro v-shaped grooves with fine sharp edges in the grinding. Fine micro v-shaped grooves are key components to fabricate LGP(light guide plate), optical fiber connector and so on. Conventional v-shaped groove methods such as etching and lithography are difficult to make grooves with accuracy and cutting by lathe is difficult to select target materials. Therefore, as a preliminary stage to developing the grinding technology that will be expected fabrications for micro 3-dimensional structure of high effectivity and accuracy and freed up the restrictions of machinability to the materials for micro v-shaped grooves, truing is carried out with resin bond diamond wheel and electroforming diamond wheel using a cup-type truer. From the experimental results, it is found that the effects according to working direction of the cup-type truer and the restrainable methods of plastic deformation that is generated at wheel edge are examined. As a result, fine micro v-shaped diamond wheel was obtained, which are applicable to micro grinding for optical devices.

In-process Truing of Metal-bonded Diamond Wheels for Electrolytic In-process Dressing (ELID) Grinding

  • Saleh, Tanveer;Biswas, Indraneel;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.3-6
    • /
    • 2008
  • Electrolytic in-process dressing (ELID) grinding is a new technique for achieving a nanoscale surface finish on hard and brittle materials such as optical glass and ceramics. This process applies an electrochemical dressing on the metal-bonded diamond wheels to ensure constant protrusion of sharp cutting grits throughout the grinding cycle. In conventional ELID grinding, a constant source of pulsed DC power is supplied to the ELID cell, but a feedback mechanism is necessary to control the dressing power and obtain better performance. In this study, we propose a new closed-loop wheel dressing technique for grinding wheel truing that addresses the efficient correction of eccentric wheel rotation and the nonuniformity in the grinding wheel profile. The technique relies on an iterative control algorithm for the ELID power supply. An inductive sensor is used to measure the wheel profile based on the gap between the sensor head and wheel edge, and this is used as the feedback signal to control the pulse width of the power supply. We discuss the detailed mathematical design of the control algorithm and provide simulation results that were confirmed experimentally.

Nano-surface Machining Technology of Tungsten Carbide Blade for MLCC Cutting Process (MLCC 절단용 초경합금 칼날의 나노표면 가공 기술)

  • Kang, Byung-Ook;Shin, Gun-hwi;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.41-46
    • /
    • 2019
  • The purpose of this study is to examine and propose a high quality blade manufacturing method by applying ELID grinding technology to machining the tungsten carbide blade edge for MLCC sheet cutting. In this study, experiments are performed according to the abrasive type of grinding wheel, grinding method and grinding direction using the non-stop continuous dressing ELID grinding technology. By comparing and analyzing the chipping phenomena and surface roughness of both the blade grinding surface and the processed surface, a method for machining the tungsten carbide blade for cutting MLCC sheet is proposed. From the analysis of the surface roughness and chipping phenomena, it is confirmed that the use of diamond abrasive is advantageous for the blade machining. In addition, it succeeds in the machining of $6{\mu}m$ fine blade without any chipping, by using the grinding wheel #4000 with the diamond abrasive.

A Study on the Grinding Characteristics of Porous Ceramics (Porous Ceramics의 연삭특성에 관한 연구)

  • Park, Hwi-Keun;Park, Se-Jin;Choi, Yun-Seo;Hwang, In-Hwan;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.165-170
    • /
    • 2012
  • The resin bonded diamond wheel is used to grind the difficult-to-cut materials. Traditionally, the resin bonded diamond wheel is manufactured without any pores due to the characteristics of resin bond. In this study, two porous resin bonded diamond wheel were made and the grinding characteristics were compared with traditional nonporous ones. The experimental results indicate that the porous resin bond diamond wheel require less grinding forces and powers.