• Title/Summary/Keyword: Cutting Size

Search Result 562, Processing Time 0.024 seconds

Physiological and Biological Characteristics of Cuttings of Mulberry Trees in Korea(Abstract)

  • Chung, Tae-Am
    • Journal of Sericultural and Entomological Science
    • /
    • v.19 no.1
    • /
    • pp.37-38
    • /
    • 1977
  • Since 1972 a series of experiments were conducted to reveal physiological function and biological activities involved in rooting of mulberry cuttings, and the behaviour of ether extractable growth control substances in leaves and stens. Measurements were made on various mulberry varieties for respiration of cuttings, suitable size for the production of cuttings, change of rootability of cuttings with growth of cutting shoots after cutting date, rooting tests on the green beans with ether leaf extract and ether stem extract, and rooting effect of cutting by NAA treatment. (omitted)

  • PDF

Calculation of Economic CL Data for Sculptured Surface Machining (자유곡면 절삭을 위한 경제적인 CL 데이타 계산)

  • Kim, Dae-Hyeon;Choe, Byeong-Gyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.9 no.2
    • /
    • pp.27-35
    • /
    • 1983
  • This paper describes a procedure of generating economic cutter-location(CL) data for the machining of sculptured surfaces on a multi-axis NC milling machine. Measures of economy are the machining time (cutter move distance) and the length of NC tape (number of CL data points). The presented procedure minimizes both the number of CL data and the total distance of cutter moves, for a given cutter (spherical end-mill) size and parameteric cutting direction, while satisfying given tolerance requirements. The procedure has been implemented in FORTRAN for a smooth composite Bezier surface. The maximum allowable cutter size is calculated by the program so that a user can choose a cutter size. CL data can be generated in both parametric directions u and v. Experimental results show that there are significant differences between the parametric directions, and that cutter size should be as large as possible in order to minimize the cutting time and NC tape length.

  • PDF

Analytical model for estimation of digging forces and specific energy of cable shovel

  • Stavropoulou, M.;Xiroudakis, G.;Exadaktylos, G.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.23-51
    • /
    • 2013
  • An analytical algorithm for the estimation of the resistance forces exerted on the dipper of a cable shovel and the specific energy consumed in the cutting-loading process is presented. Forces due to payload and to cutting of geomaterials under given initial conditions, cutting trajectory of the bucket, bucket's design, and geomaterial properties are analytically computed. The excavation process has been modeled by means of a kinematical shovel model, as well as of dynamic payload and cutting resistance models. For the calculation of the cutting forces, a logsandwich passive failure mechanism of the geomaterial is considered, as has been found by considering that a slip surface propagates like a mixed mode crack. Subsequently, the Upper-Bound theorem of Limit Analysis Theory is applied for the approximate calculation of the maximum reacting forces exerted on the dipper of the cable shovel. This algorithm has been implemented into an Excel$^{TM}$ spreadsheet to facilitate user-friendly, "transparent" calculations and built-in data analysis techniques. Its use is demonstrated with a realistic application of a medium-sized shovel. It was found, among others, that the specific energy of cutting exhibits a size effect, such that it decreases as the (-1)-power of the cutting depth for the considered example application.

A Study on the Characteristics Analysis of Cutting Fluid Aerosol Using Dual-PDA System - for Turning Process (Dual-PDA를 이용한 절삭유 에어로졸 특성분석에 관한 연구(I) -선삭공정을 중심으로)

  • Jeong, J.Y.;Hwang, D.C.;Hong, G.B.;Woo, C.K.;Hwang, J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.10-17
    • /
    • 2005
  • The proposed research has been performed to know the characteristics of cutting fluid aerosol formation using Dual-PDA system in machining process. The cutting fluid aerosol size and concentration is common attributes that quantify the environmental intrusiveness or air quality contamination. The atomized cutting fluid aerosols can be affected to human health risk such as lung cancer and skin irritations. Even though cutting fluid can be improved the machining quality and productivity in a carefully. its use must be controlled and optimized carefully. This experimental works using Dual-PDA were performed to analyze the cutting fluid aerosol behaviors and characteristics in turning process using precise aerosol particle measuring system. The obtained experimental results profovide basic knowledge to develop the environmentally conscious machining process. This results cail be provided as a basis to estimate and control the hazardous cutting fluid aerosol in machining process.

  • PDF

Experimental Investigation of Concave and Convex Micro-Textures for Improving Anti-Adhesion Property of Cutting Tool in Dry Finish Cutting

  • Kang, Zhengyang;Fu, Yonghong;Chen, Yun;Ji, Jinghu;Fu, Hao;Wang, Shulin;Li, Rui
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.583-591
    • /
    • 2018
  • Tool-chip adhesion impacts on cutting performance significantly, especially in finish cutting process. To promote cutting tools' anti-adhesion property, the concave micro-grooves texture (MGT) and convex volcano-like texture (VLT) were fabricated separately on lathe tools' rake faces by laser surface texturing (LST). Various orientations of MGT and different area densities (9% and 48%) and regions (partial and full) of VLT were considered in textured patterns designing. The following orthogonal cutting experiments, machining of aluminum alloy 5038, analyzed tools' performances including cutting force, cutting stability, chip shape, rake face adhesion and abrasion. It indicated that under dry finish cutting conditions, MGT contributed to cutting stability and low cutting forces, meanwhile friction and normal force reduced by around 15% and 10%, respectively with a weak correlation to the grooves' orientation. High density VLT tools, on the other hand, presented an obvious anti-adhesion property. A $5{\mu}m$ reduction of crater wear's depth can be observed on textured rake faces after long length cutting and textured rake faces presented half size of BUE regions comparing to the flat tool, however, once the texture morphologies were filled or worn, the anti-adhesion effect could be invalid. The bearing ratio curve was employed to analysis tool-chip contact and durability of textured surfaces contributing to a better understanding of anti-adhesion and enhanced durability of the textured tools.

Cutting Performance of Si$_3$N$_4$ Based SiC Ceramic Cutting Tools

  • Kwon, Won-Tae;Kim, Young-Wook
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.388-394
    • /
    • 2004
  • Composites of Si$_3$N$_4$-SiC containing up to 30 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. To determine the effect of sintering time and SiC content on the mechanical properties and the cutting performance, the composites with fixed 8hr-sintering time and 20 wt% SiC content were fabricated and tested. Fracture toughness of the composites increased with increasing sintering time, while the hardness increased as the SiC content increased up to 20 wt%. The hardness of the composites was relatively independent of the grain size and the sintered density. For machining heat-treated AISI4140, the insert with 20 wt% SiC sintered for 8hr showed the longest tool life while the insert with 20 wt% SiC sintered for 12hr showed the longest tool life for machining gray cast iron. An effort was made to relate the mechanical properties, such as hardness, fracture toughness and wear resistance coefficient with the tool life. However, no apparent relationship was found between them. It may be stated that tool life is affected by not only the mechanical properties but also other properties such as surface roughness, density, grian size and the number of the inherent defects in the inserts.

A Study on the Marking Efficiency of A-line Skirt (A-line Skirt의 Marking 효율에 관한 연구)

  • Uh Mi-Kyung
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.8 no.1
    • /
    • pp.69-79
    • /
    • 2006
  • The purpose of this study is to find the proper width of fabric which can bring high efficiency on productivity. We focus on the marking method by comparing and analyzing the marking efficiency of A-line skirt. This study employs 4 criteria to mark the A-line skirt, which are cutting method, angle, width, and direction, respectively. There can be 2 different cutting methods(fold pattern and add seam pattern at the front and back center line), and 2 different angles(warp angle and bias angle). Also, width of the fabric can be classified into 2 groups(110cm, 150cm), and marking direction can be grouped into 2(one direction marker and one direction per each size marker). These 4 criteria make 16($2^*2^*2^*2$) cases for this study. Main findings are follows. First, the skirt with folded at the center line had higher efficiency rate than the skirt with add seam at the center line. Second, the skirt with the 150cm width has higher efficiency rate than that of 110cm. Third, fixing the warp angle has higher efficiency rate than that of fixing the bias angle at the front and back center line. Finally, one direction per each size marker has much higher efficiency than the one direction marker.

  • PDF

Performance assessment of HEPA filter to reduce internal dose against radioactive aerosol in nuclear decommissioning

  • Hee Kwon Ku;Min-Ho Lee;Hyunjin Boo;Geun-Dong Song;Deokhee Lee;Kaphyun Yoo;Byung Gi Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1830-1837
    • /
    • 2023
  • The thermal cutting of contaminated or activated metals during decommissioning nuclear power plants inevitably results in the release of radioactive aerosol. Since radioactive aerosols are pernicious particles that contribute to the internal dose of workers, air conditioning units with a HEPA filter are used to remove radioactive aerosols. However, a HEPA filter cannot be used permanently. This study evaluates the efficiency and lifetime of filters in actual metal cutting condition using a plasma arc cutter and a high-resolution aerosol detector. The number concentration and size distribution of aerosols from 6 nm to 10 ㎛ were measured on both the upstream and downstream sides of the filter. The total aerosol removal efficiency of HEPA filter satisfies the standard of removing at least 99.97% of 0.3 ㎛ airborne particles, even if the pressure drop increases due to dust feeding load. The pressure drop and particle size removal efficiency at 0.3 ㎛ of the HEPA filter were found to increase with repeated cutting experiments. By contrast, the efficiency of used HEPA filter reduced in removing nano-sized aerosols by up to 79.26%. Altogether, these results can be used to determine the performance guidance and replacement frequency of HEPA filters used in nuclear power plants.

The Development of a new High Working Accuracy by Ultrasonic Vibration Cutting (초음파진동절삭을 이용한 새로운 고정밀가공법의 개발)

  • ;Shin, Bong-Seok
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 1977
  • So far, high accuracy in-process sensors have been used for controlling the cutting tool, but the method followed in this new system is guite different form previous processes. In this system, after the rough cut the mark indication the pasition of the finished size in put on the cutting surface of the workpiece by ultrasonic or vibration cutting. The cutting is then continued until the mark just disappears, This position being observed by the used of a simple in-proces sensor, The in-prosess sensor in used only to detect the existence or dis apperance of the mark.

Machining of Wc-Co alloys with diamond tool (다이아몬드공구에 의한 초경합금의 절삭)

  • 김성청
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.102-111
    • /
    • 1997
  • This paper deals with the machinability based on turning of WC-Co allows with the coated and the sintered diamond tools. The main conclusions obtained are as follows. (1) When machining WC-10%Co alloy, the flank wear of sintered diamond tool increases more largely with the increase of cutting speed in comparison with coated diamond tool. The tool wear decreases with the increase of the grain size and nose radius of sintered diamond tool. (2) When machining WC-20%Co alloy, the tool wear and cutting force decrease with the decrease of rake angle. Their exists a certain cutting speed range to exhibit the smallest tool wear in machining the WC-20%Co alloy, and this critical cutting speed becomes higher by 2 times in the case of coated diamond tool compared with sintered diamond tool. (3) The machinability becomes better with the increase of Co content. The effects of cutting speed and feed rate on the roughness of machined surface become smaller with the increase of Co content.

  • PDF