• Title/Summary/Keyword: Cutting Angle

Search Result 557, Processing Time 0.025 seconds

Advanced Abdominal MRI Techniques and Problem-Solving Strategies (복부 자기공명영상 고급 기법과 문제 해결 전략)

  • Yoonhee Lee;Sungjin Yoon;So Hyun Park;Marcel Dominik Nickel
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.2
    • /
    • pp.345-362
    • /
    • 2024
  • MRI plays an important role in abdominal imaging because of its ability to detect and characterize focal lesions. However, MRI examinations have several challenges, such as comparatively long scan times and motion management through breath-holding maneuvers. Techniques for reducing scan time with acceptable image quality, such as parallel imaging, compressed sensing, and cutting-edge deep learning techniques, have been developed to enable problem-solving strategies. Additionally, free-breathing techniques for dynamic contrast-enhanced imaging, such as extra-dimensional-volumetric interpolated breath-hold examination, golden-angle radial sparse parallel, and liver acceleration volume acquisition Star, can help patients with severe dyspnea or those under sedation to undergo abdominal MRI. We aimed to present various advanced abdominal MRI techniques for reducing the scan time while maintaining image quality and free-breathing techniques for dynamic imaging and illustrate cases using the techniques mentioned above. A review of these advanced techniques can assist in the appropriate interpretation of sequences.

Study on slope stability of waste dump with a weak layer using finite element limit analysis method

  • Chong Chen;Huayong Lv;Jianjian Zhao;Zhanbo Cheng;Huaiyuan Wang;Gao Xu
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.253-263
    • /
    • 2024
  • Slope stability is generally paid more attention to in slope protection works, especially for slope containing weak layers. Two indexes of safety factor and failure model are selected to perform slope stability. Moreover, the finite element limit analysis method comprehensively combines the advantage of the limit analysis method and the finite element method obtaining the upper and lower bounds of the safety factor and the failure mode under the slope stability limit state. In this study, taking a waste dump containing a weak layer as an engineering background, the finite element limit analysis method is adopted to explore the potential failure mode. Meanwhile, the sensitivity analysis of slope stability is performed on geometrical and geotechnical parameters of the waste dump. The results show that the failure mode of the waste dump slope is two wedges if the weak layer is located on the ground surface (Model A), while the slope can be observed as three wedges failure if the weak layer is below the ground surface (Model B). In addition, both failure modes are highly sensitive to the friction angle of the weak layer and the shear strength of waste disposal, and moderately sensitive to the heap height, the dip angle and cohesion of the weak layer, while the toe cutting has limited effect on the slope stability. Moreover, the sensitivity to the excavation of the ground depends on the location of the weak layer and failure mode.

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.

Numerical Study on the Effect of Turbine Blade Shape on Performance Characteristics of a Dental Air Turbine Handpiece (터빈 블레이드 형상에 따른 의료용 에어터빈 핸드피스의 성능 특성에 관한 수치적 연구)

  • Lee, Jeong-Ho;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.34-42
    • /
    • 2009
  • High-speed air turbine handpieces have been used as a dental cutting tool in clinical dentistry for over 50 years, but little study has been reported on their performance analysis. Therefore, the effect of turbine blade shape on performance characteristics of dental air turbine handpiece were studied using CFD in this paper. Computations have been performed for five different positions of turbine blade by using frozen rotor method that is one of steady-state method. The characteristics of turbine blade for shapes and reflection angles were analyzed. As a result of the computation, torque is increased by increasing the reflection angle of turbine blade.

Reliability-Based Analysis for Rock Slopes Considering Failure Modes (파괴형태를 고려한 암반사면의 신뢰도해석)

  • 이인모;이명재
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.3-16
    • /
    • 1999
  • This paper presents the results of sensitivity analysis based on an example study to verify a newly developed reliability-based model for rock slopes considering uncertainties of discontinuities and failure modes-plane, wedge, and toppling. The parameters that are needed for sensitivity analysis are the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and the rock slope geometry. The variability in orientation and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a great influence on the rock slope stability, The stability of rock slopes including failure modes is more influenced by the selection of dip direction of cutting rock face than any other design variables, The example study shows that the developed reliability-based analysis model can reasonably assess the stability of rock slope.

  • PDF

The effect of retention grooves in Acrylic resin tooth denture base bond (합성수지 인공치와 열중합의치상 Resin의 결합시 인공치에 형성하는 유지공의 효과에 관한 연구)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.9 no.1
    • /
    • pp.51-55
    • /
    • 1987
  • One of the primary advantages of acrylic resin teeth is their ability to bond chemically to the denture base resins. Fracture od acrylic resin teeth from a maxillary denture, however, is not uncommon. Bonding failures have been attributed to faulty boil-out procedures that fail to eliminate all traces of wax from the ridge lap surfaces of the teeth and to contamination of the ridge lap surface by careless application of tinfoil substitute. Attempts to increase the strength of the bond between acrylic resin teeth and heat-cured denture base resin include grinding the glossy ridge lap surface (in fluid system), painting the ridgelap surface of the teeth with monomer-polymer solution, and cutting retention grooves in the ridge lap surface of the teeth. This latter method has been tested by applying a tensile force in a labial direction to the incisal part of the lingual surface of the acrylic resin teeth. A progressive shear compressive load was applied at an angle to the lingual surface of acrylic resin teeth bonded to denture base acrylic resin. No statistically singificant advantage was derived by preparing retention grooves of different shapes in the ridgelap surface of the denture teeth.

  • PDF

Adaptive Beamforming System Architecture Based on AOA Estimator (AOA 추정기 기반의 적응 빔형성 시스템 구조)

  • Mun, Ji-Youn;Bae, Young-Chul;Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.777-782
    • /
    • 2017
  • The Signal Intelligence (SIGINT) system based on the adaptive beamformer, comprised of the AOA estimator followed by the interference canceller, is a cutting edge technology for collecting various signal information utilizing all sorts of devices such as the radar and satellite. In this paper, we present the efficient adaptive SIGINT structure consisted of an AOA estimator and an adaptive beamformer. For estimating AOA information of various signals, we employ the Multiple Signal Classification (MUSIC) algorithm and for efficiently suppressing high-power interference signals, we employ the Minimum Variance Distortionless Response (MVDR) algorithm. Also, we provide computer simulation examples to verify the performance of the presented adaptive beamformer structure.

Development of Discharge Electrode for Machining Connector Mold applying MIM Process (MIM 공법 적용 커넥터 금형 가공용 방전 전극 개발)

  • Shin, Kwang-Ho;Jeon, Yong-Jun;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.37-40
    • /
    • 2014
  • A discharge electrode plays a role of shaving off workpiece with spark generated by current in discharge machining. Accordingly, for the discharge electrode, an electrode with excellent wear resistance is necessary. Generally, Graphite and Cu are used as the materials of the electrode, and recently Cu-W is mainly used as an electrode with excellent wear resistance. However, the form of the electrode generally used is produced mostly using cutting work, so a lot of costs incur if several similar forms are needed. Thus, this study developed a Cu-W electrode using Metal Injection Molding (MIM) process to produce similar forms with excellent productivity and a great quantity of electrodes in a similar form in discharge machining and carried out a discharge machining test. In developing an electrode applying MIM, predicting contraction of a product in a sintering process, a mold expansion ratio of 1.29486 was given, but the actual product showed a percentage of contraction 24% to 32%, which showed a difference of 3% to 5%. In addition, to verify wear resistance of the discharge electrode, abrasion loss was measured after the discharge.

  • PDF

Fabrication of LGP Micro-Channels by Micro End-Milling and MR Fluid Jet Polishing (Micro End-Milling과 MR Fluid Jet Polishing을 이용한 도광판 마이크로 채널 제작)

  • Lee, J.W.;Ha, S.J.;Hong, K.P.;Cho, M.W.;Kim, G.H.;Yoon, G.S.;Je, T.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.80-85
    • /
    • 2013
  • The surface integrity of micro-machined products affects the performance of products significantly. Micro-burrs resulting from micro-cutting degrades the surface quality. Therefore it is desired to eliminate them completely and many studies have been undertaken for this purpose. In this study, micro-end-milling was carried out on nickel alloy and brass materials commercially used for light guide plate mold in 3-D optical devices. After completing this micro-machining, the burr heights were measured with a microscope. Then, deburring was done on the machined edges using the MR jet polishing method. A jet angle of $0^{\circ}$ and deburring times of 1, 3, and 5 min. were chosen. It was found that burrs were completely eliminated after 5 min of MR fluid jet polishing.

The property of WC(Co 0.5%) Ultra precision turning for Glass Lens molding (Glass Lens 성형용 초경합금(Co 0.5%)의 초정밀 절삭특성)

  • Kim, Min-Jae;Lee, Jun-Key;Kim, Tae-Kyoung;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.41-41
    • /
    • 2010
  • In this research, to study tungsten carbide alloy(Co 0.5%) ultra precision turning possibility that is used Glass Molding Press(GMP) using conventional (Rake angle $-25^{\circ}$) single crystal diamond bite observed machining surface condition, surface roughness($R_a$), diamond bite cutting edge after tungsten carbide alloy ultra precision turning. Suggested and designed optimum chamfer bite shape to suggest ultra precision optimum bite using Finite Element Analysis(FEM). After machining tungsten carbide alloy ultra precision turning using optimum chamfer bite and comparing with conventional bite machine result and studied optimum chamfer bite design inspection and also tungsten carbide ultra precision turning possibility for high temperature compression glass lens molding.

  • PDF