• Title/Summary/Keyword: Customer-based Recommendation

Search Result 190, Processing Time 0.023 seconds

How Can Customer Experience on CDJ Be Shaped?: Can Rose Be Tamed?

  • Lee, Sang mi;Han, Sang man
    • Asia Marketing Journal
    • /
    • v.22 no.3
    • /
    • pp.87-105
    • /
    • 2020
  • With the development of Information Technology, customers require promptly higher quality products and services. Companies try to make newly digital marketing strategies, but there are no empirical researches on them. This article empirically presents a new perspective that companies can shape the customer decision journey ahead by coordinating customer experience. In this article, based on Elaborated Likelihood Model (ELM) theory, customer experience consists of the emotional or cognitive experience. We surveyed about 200 subjects (N = 217) in their 20s and 30s based on the International Music Industry Association's Music Listening 2019 report, then analyzed four different models (before personalization-cognitive experience, before personalization-emotional experience, after personalization- cognitive experience, after personalization-emotional experience) by JASP and R Studio. We conducted Structural Equation Model (SEM) and paired t-test. Personalization factors are about recommendation systems in Spotify. The results of survey represent that companies can shape the Customer Decision Journey (CDJ) ahead especially through enhance cognitive experience. It empirically proves Elaborated Likelihood Model (ELM). The conclusion can be drawn that 'pulling' customer experience can be a new marketing strategies in the digital era.

Implementation of Intelligent Preference Goods Recommendation System Using Customer's Profiles and Interest Measuring based on RFID (RFID 기반의 고객 프로파일과 관심도 측정을 이용한 지능형 선호상품 추천 시스템의 구현)

  • Lim, Sang-Min;Lee, Keun-Wang;Oh, Myoung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1625-1631
    • /
    • 2008
  • This paper is going to research about RFID real time position finder technology and the offline shopping mall's client shop list managed by the RF fused Tag USB memory to analyze out the output of the data for providing real time interactive customer intelligence commodity system.

Social Network : A Novel Approach to New Customer Recommendations (사회연결망 : 신규고객 추천문제의 새로운 접근법)

  • Park, Jong-Hak;Cho, Yoon-Ho;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.123-140
    • /
    • 2009
  • Collaborative filtering recommends products using customers' preferences, so it cannot recommend products to the new customer who has no preference information. This paper proposes a novel approach to new customer recommendations using the social network analysis which is used to search relationships among social entities such as genetics network, traffic network, organization network, etc. The proposed recommendation method identifies customers most likely to be neighbors to the new customer using the centrality theory in social network analysis and recommends products those customers have liked in the past. The procedure of our method is divided into four phases : purchase similarity analysis, social network construction, centrality-based neighborhood formation, and recommendation generation. To evaluate the effectiveness of our approach, we have conducted several experiments using a data set from a department store in Korea. Our method was compared with the best-seller-based method that uses the best-seller list to generate recommendations for the new customer. The experimental results show that our approach significantly outperforms the best-seller-based method as measured by F1-measure.

  • PDF

An Empirical Study on Customer Subscription Intention and Satisfaction on Subscription-based Music Streaming Platform (구독형 음원 스트리밍 플랫폼 고객의 구독의도 및 고객만족에 대한 실증 연구)

  • Lee, Sang Hoon;Kim, Seo Young;Park, Min Seo;Kim, Youn Sung
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.593-615
    • /
    • 2022
  • Purpose: The purpose of this study was to explore and examine the factors influencing customer satisfaction and subscription intention in order to propose useful implication regarding subscription economy model. Methods: This study adopts the extended Unified Theory of Acceptance and Use of Technology model (UTAUT2) as the theoretical framework. On the basis of literature review, this study suggested 9 related hypothesis. To examine the hypothesis proposed, the study designed surveys with 32 questions and 456 answers were collected for the analysis. The study adopted a structural equation model and path analysis, using AMOS and SPSS programs. Results: The results of this study are as follow: All hypothesis except performance expectancy and effort expectancy have significant influence on customer satisfaction. Performance expectancy and effort expectancy have no significant influence on customer satisfaction and facilitate condition is significant but negatively associated with customer satisfaction. Conclusion: Result of this study is expected to suggest data regarding subscription economy and customer satisfaction for business with subscription model. In detail the result implies that highly sophisticated curation system would create more customer satisfaction and subscription intention rather than how a subscription-based platform is easily used. Moreover, curation system of subsription-based music platform should function with high accuracy on recommendation in a creative visual form in order to gain comparative advantage while most platforms have built own curation service.

Sparsity Effect on Collaborative Filtering-based Personalized Recommendation (협업 필터링 기반 개인화 추천에서의 평가자료의 희소 정도의 영향)

  • Kim, Jong-Woo;Bae, Se-Jin;Lee, Hong-Joo
    • Asia pacific journal of information systems
    • /
    • v.14 no.2
    • /
    • pp.131-149
    • /
    • 2004
  • Collaborative filtering is one of popular techniques for personalized recommendation in e-commerce sites. An advantage of collaborative filtering is that the technique can work with sparse evaluation data to predict preference scores of new alternative contents or advertisements. There is, however, no in-depth study about the sparsity effect of customer's evaluation data to the performance of recommendation. In this study, we investigate the sparsity effect and hybrid usages of customers' evaluation data and purchase data using an experiment result. The result of the analysis shows that the performance of recommendation decreases monotonically as the sparsity increases, and also the hybrid usage of two different types of data; customers' evaluation data and purchase data helps to increase the performance of recommendation in sparsity situation.

A sequence-based personalized service for the short life cycle products (수명주기가 짧은 상품들에 대한 시퀀스 기반 개인화 서비스)

  • Choi, Ju-Choel
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.293-301
    • /
    • 2017
  • Most new products not only suddenly disappear in the market but also quickly cannibalize older products. Under such a circumstance, retailers may have too much stock, and customers may be faced with difficulties discovering products suitable to their preferences among short life cycle products. To address these problems, recommender systems are good solutions. However, most previous recommender systems had difficulty in reflecting changes in customer preferences because the systems employ static customer preferences. In this paper, we propose a recommendation methodology that considers dynamic customer preferences. The proposed methodology consists of dynamic customer profile creation, neighborhood formation, and recommendation list generation. For the experiments, we employ a mobile image transaction dataset that has a short product life cycle. Our experimental results demonstrate that the proposed methodology has a higher quality of recommendation than a typical collaborative filtering-based system. From these results, we conclude that the proposed methodology is effective under conditions where most new products have short life cycles. The proposed methodology need to be verified in the physical environment at a future time.

Development of Music Recommendation System based on Customer Sentiment Analysis (소비자 감성 분석 기반의 음악 추천 알고리즘 개발)

  • Lee, Seung Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.197-217
    • /
    • 2018
  • Music is one of the most creative act that can express human sentiment with sound. Also, since music invoke people's sentiment to get empathized with it easily, it can either encourage or discourage people's sentiment with music what they are listening. Thus, sentiment is the primary factor when it comes to searching or recommending music to people. Regard to the music recommendation system, there are still lack of recommendation systems that are based on customer sentiment. An algorithm's that were used in previous music recommendation systems are mostly user based, for example, user's play history and playlists etc. Based on play history or playlists between multiple users, distance between music were calculated refer to basic information such as genre, singer, beat etc. It can filter out similar music to the users as a recommendation system. However those methodology have limitations like filter bubble. For example, if user listen to rock music only, it would be hard to get hip-hop or R&B music which have similar sentiment as a recommendation. In this study, we have focused on sentiment of music itself, and finally developed methodology of defining new index for music recommendation system. Concretely, we are proposing "SWEMS" index and using this index, we also extracted "Sentiment Pattern" for each music which was used for this research. Using this "SWEMS" index and "Sentiment Pattern", we expect that it can be used for a variety of purposes not only the music recommendation system but also as an algorithm which used for buildup predicting model etc. In this study, we had to develop the music recommendation system based on emotional adjectives which people generally feel when they listening to music. For that reason, it was necessary to collect a large amount of emotional adjectives as we can. Emotional adjectives were collected via previous study which is related to them. Also more emotional adjectives has collected via social metrics and qualitative interview. Finally, we could collect 134 individual adjectives. Through several steps, the collected adjectives were selected as the final 60 adjectives. Based on the final adjectives, music survey has taken as each item to evaluated the sentiment of a song. Surveys were taken by expert panels who like to listen to music. During the survey, all survey questions were based on emotional adjectives, no other information were collected. The music which evaluated from the previous step is divided into popular and unpopular songs, and the most relevant variables were derived from the popularity of music. The derived variables were reclassified through factor analysis and assigned a weight to the adjectives which belongs to the factor. We define the extracted factors as "SWEMS" index, which describes sentiment score of music in numeric value. In this study, we attempted to apply Case Based Reasoning method to implement an algorithm. Compare to other methodology, we used Case Based Reasoning because it shows similar problem solving method as what human do. Using "SWEMS" index of each music, an algorithm will be implemented based on the Euclidean distance to recommend a song similar to the emotion value which given by the factor for each music. Also, using "SWEMS" index, we can also draw "Sentiment Pattern" for each song. In this study, we found that the song which gives a similar emotion shows similar "Sentiment Pattern" each other. Through "Sentiment Pattern", we could also suggest a new group of music, which is different from the previous format of genre. This research would help people to quantify qualitative data. Also the algorithms can be used to quantify the content itself, which would help users to search the similar content more quickly.

Personalized Book Curation System based on Integrated Mining of Book Details and Body Texts (도서 정보 및 본문 텍스트 통합 마이닝 기반 사용자 맞춤형 도서 큐레이션 시스템)

  • Ahn, Hee-Jeong;Kim, Kee-Won;Kim, Seung-Hoon
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.33-43
    • /
    • 2017
  • The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.

Hybrid Intelligent Web Recommendation Systems Based on Web Data Mining and Case-Based Reasoning

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.366-370
    • /
    • 2003
  • In this research, we suggest a hybrid intelligent Web recommendation systems based on Web data mining and case-based reasoning (CBR). One of the important research topics in the field of Internet business is blending artificial intelligence (AI) techniques with knowledge discovering in database (KDD) or data mining (DM). Data mining is used as an efficient mechanism in reasoning for association knowledge between goods and customers' preference. In the field of data mining, the features, called attributes, are often selected primary for mining the association knowledge between related products. Therefore, most of researches, in the arena of Web data mining, used association rules extraction mechanism. However, association rules extraction mechanism has a potential limitation in flexibility of reasoning. If there are some goods, which were not retrieved by association rules-based reasoning, we can't present more information to customer. To overcome this limitation case, we combined CBR with Web data mining. CBR is one of the AI techniques and used in problems for which it is difficult to solve with logical (association) rules. A Web-log data gathered in real-world Web shopping mall was given to illustrate the quality of the proposed hybrid recommendation mechanism. This Web shopping mall deals with remote-controlled plastic models such as remote-controlled car, yacht, airplane, and helicopter. The experimental results showed that our hybrid recommendation mechanism could reflect both association knowledge and implicit human knowledge extracted from cases in Web databases.

Handling Incomplete Data Problem in Collaborative Filtering System

  • Noh, Hyun-ju;Kwak, Min-jung;Han, In-goo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.105-110
    • /
    • 2003
  • Collaborative filtering is one of the methodologies that are most widely used for recommendation system. It is based on a data matrix of each customer's preferences of products. There could be a lot of missing values in such preference. data matrix. This incomplete data is one of the reasons to deteriorate the accuracy of recommendation system. Multiple imputation method imputes m values for each missing value. It overcomes flaws of single imputation approaches through considering the uncertainty of missing values.. The objective of this paper is to suggest multiple imputation-based collaborative filtering approach for recommendation system to improve the accuracy in prediction performance. The experimental works show that the proposed approach provides better performance than the traditional Collaborative filtering approach, especially in case that there are a lot of missing values in dataset used for recommendation system.

  • PDF